[初中数学说课稿《图形的平移》]一、说教材 1、教学内容:今天我说课的内容是国标本苏教版四年级下册P45-46及想想做做1-3题。 2、教学内容的地位、作用和意义这部分内容教学在方格纸上把一个简单图形沿水平...+阅读
一、教材分析
1、坐标变换是化简曲线方程,以便于讨论曲线的性质和画出曲线的一种重要方法。这一节教材主要讲坐标轴的平移,要求学生在正确理解新旧坐标之间的关系的基础上掌握平移公式;并能利用平移公式对新旧坐标系中点的坐标和曲线的方程进行互化。这就是本节课的教学目的之一。
2、本教材的重点是平移公式的推导及其简单应用。为了解决重点,教学中先以圆(x-3)2+(y-2)2=52化为x2+y2=52这个例子引入来说明,虽然点的位置没有改变曲线的位置、形状和大小没有改变,但是由于坐标系的改变,点的坐标和曲线的方程也随着改变,而且适当地变换坐标系,曲线的方程就可以化简,以此指明平移坐标轴的意义和作用,并由此引出平移的定义,导出平移公式。
在推导平移公式时,先从特殊到一般,通过观察、归纳、猜想和推导,得出平移公式,还引导学生运用代数中刚学过的复数的几何意义来证明,既开阔视野,沟通学科知识,又培养学生的思维能力,同时还可通过一组练习,让学生正用、逆用、变用平移公式,达到进一步加深理解、熟练掌握公式的目的,进而培养学生的发现、推理能力和教学思想方法。
3、本节教材的难点是平移公式两种形式何时运用,学生易产生混淆,教学中应通过实例让学生自己领会,并及时加以小结,掌握其规律,加强公式的记忆并培养灵活运用知识的能力。
4、本节寓德于教的要点,主要是通过事物变化过程的内在联系,认识变与不变的矛盾对立统一规律,对学生进行辩证唯物主义的教育。
二、教学过程
(一)提出问题教师先在黑板上画出图形,让学生观察、思考并提问以下问题:
1、如图,点O和○O关于坐标系xoy的坐标和方程各是什么?点O和○O关于坐标系xoy的坐标和方程各是什么?两个方程,那一个较为简单?(学生回答,教师在黑板上板书:)直角坐标系 点O的坐标 ○O的方程在xoy中 (3,2); (x-3)2+(y-2)2=52在xoy中 (0,0) x2+y2=52两个方程,显然后一个方程简单。
(二)引入新课(继续提问)
1、从上面的例子可以看出什么?(答) (1)对于同一点或同一曲线,由于 选取的坐标系不同,点的坐标功曲线的方程也不同。(2)把一个坐标系变换为另一个适当的坐标系,可以使曲线的方程简化,便于研究曲线的性质。教师继续提出新的话题,即如何把一个坐标系变换为另一个适当的坐标系呢?我们再从上面的例子来观察坐标系xoy与xoy有何异同点呢?(提问)(答)(1)坐标轴的方向和长度单位都相同--不变(2)坐标系的原点的位置不同--变(教师归纳) 这种坐标系的变换叫做坐标轴的平移,简称移轴。
(让学生打开课本阅读移轴的定义,教师在黑板上板书)(板书) 坐标轴的平移
(三)讲授新课(板书)
1、坐标轴平移的定义
2、坐标轴平移公式思路:(1)以特殊到一般,在已画出的图形上任取四个点(分别在第
一、
二、
三、四系限或坐标轴上)让学生分别写出在新、旧坐标系里的坐标,并观察、分析出它们的关系。(答) 坐标平面上任意一点在原坐标系中坐标和在新坐标系中的坐档,归纳出来有如下关系:(板书) 原系横坐标x=新系横坐标 x+3原系纵坐标y=新系纵坐标y+2现在把(3,2)推广到一般(h,k)能否得出 x=x+hy=y+k这个公式呢?(让学生自己动手证明)思路(2)第一步用有向线段的数量表示x,y,h,k,x,和y,第二步据图进行推导第三步由推出的公式 x=x+h (1)再推出 x=x-hy=y+k y=y-h小结:这两个公式都叫做平移(移轴)公式。
同学们还可以运用代数中学过的向量加、减法则,建立复平面来证明(留给学生课后自己作练习)
3、平移公式的应用(1)利用平移公式求在新坐标内点的新坐标例与练:①平移坐标轴,把原点平移到O(-4,3),求A(0,0), B(4,-5)的新坐标;C(5,-7) , D(4,-6)的旧坐标。②平移坐标轴,把原点平移到O( )使A(2,4)的新坐标为(3,2); B(-4,0)的旧坐标为(0,3)(2)利用平移公式化简方程例与练:(课本例)平移坐轴,把原点移到O(2,-1),求下列曲线关于新坐标系的方程,并画出新旧坐标轴和曲线。
(x-2)① x=2 ②y=-1 ③ (x+2)2 /9+(y+1)2/4=1分析:解①②时 用分别把x=2,y=-1代入公式(2) 得x=0 y=0(比课本中的解法简单)而在解③时,却要用公式(1)分别用x=+2,y=y-1代入原方程得出新方程x/9+y/4=1 (引导学生正确作出图)小结: 从例中可以看出,要把方程(x-2)2/9+ (y+1)2/4化为简单的方程x2/9+y2/4 =1 ,可把 x-2=x y+1=y,得出应把坐标原点平移到(2,-1),由此可推广,形如(x-h)2/a2+(y-k)2/b2的方程如何化简。
选择题1.坐标轴平移后,下列各数值中发生变化的是( )(A)某两点的距离 (B)某线权中点的坐标(C)某两条直线的夹角 (D)某三角形的面积答案选(C) 从此题可看出,坐标轴平移后,与坐标有关的量发生变化,但图形本身的几何性质不变。选择题2:曲线x2+y2+2x-4y+1=0在新坐标系中的方程是x2+y2=4,则新坐标系原点在旧坐标系中的坐标是( )(A) (-1,2) (B) (1,-2) (C)2,-1) (D) (-2,1)分析:把x2+y2+2x-4y+1=0配方为(x+1)2+(y-2)2=4由x+1=x===h=-1 y-2=y===k=2 故应选(A)
延伸阅读:
《图形的平移》初中数学说课稿一、说教材 1、教学内容:今天我说课的内容是国标本苏教版四年级下册P45-46及想想做做1-3题。 2、教学内容的地位、作用和意义这部分内容教学在方格纸上把一个简单图形沿水平...