[一次函数有哪些知识点]去文库,查看完整内容> 内容来自用户:你说的对 知识点一、平面直角坐标系 1,平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数...+阅读
例1】判断下列各式,哪个能确定y是x的函数?为什么?
(1)x2+y=1 (2)x+y2=1 解
(1)由x2+y=1得y=1-x2,它能确定y是x的函数. 于任意的x∈{x|x≤1},其函数值不是唯一的. 【例2】下列各组式是否表示同一个函数,为什么? 解
(1)中两式的定义域部是R,对应法则相同,故两式为相同函数.
(2)、
(3)中两式子的定义域不同,故两式表示的是不同函数.
(4)中两式的定义域都是-1≤x≤1,对应法则也相同,故两式子是相同函数. 【例3】求下列函数的定义域: 【例4】已知函数f(x)的定义域是[0,1],求下列函数的定义域: 求实数a的取值范围. 为所求a的取值范围. 【例6】求下列函数的值域:
(1)y=-5x2+1 (3)y=x2-5x+6,x∈[-1,1) (4)y=x2-5x+6,x∈[-1,3] (9)y=|x-2|-|x+1| 解
(1)∵x∈R,∴-5x2+1≤1,值域y≤1. (6)定义域为R (7)解:定义域x≠1且x≠2 (y-4)x2-3(y-4)x+(2y-5)=0 ① 当y-4≠0时,∵方程①有实根,∴Δ≥0, 即9(y-4)2-4(y-4)(2y-5)≥0 化简得y2-20y+64≥0,得 y当y=4时,①式不成立. 故值域为y 函数y在t≥0时为增函数(见图2.2-3). (9)解:去掉绝对值符号, 其图像如图2.2-4所示. 由图2.2-4可得值域y∈[-3,3]. 说明 求函数值域的方法: 1°观察法:常利用非负数:平方数、算术根、绝对值等.(如例1,2) 2°求二次函数在指定区间的值域(最值)问题,常用配方,借助二次函数的图像性质结合对称轴的位置处理.假如求函数f(x)=ax2+bx+c(a>0),在给定区间[m,n]的值域(或最值),分三种情况考虑: (如例5)可做公式用. 法求y的范围(如例6-7). 为二次函数求值域.但要注意中间量t的范围(如例6-8). 6°分离有界变量法:从已知函数式中把有界变量解出来.利用有界变量的范围,求函数y的值域(如例6-6). 7°图像法(如例6-9): 由于求函数值域不像求函数定义域那样有一定的法则和程序可寻,它要根据函数解析式的不同特点灵活用各种方法求解. 解
(2)∵f(-7)=10,∴f[f(-7)]=f(10)=100. 说明 本例较简单,但主要用意是深刻理解函数符号f(x)的意义.求分段函数值时,要注意在定义域内进行. 【例8】根据已知条件,求函数表达式.
(1)已知f(x)=3x2-1,求①f(x-1),②f(x2). (2)已知f(x)=3x2+1,g(x)=2x-1,求f[g(x)]. 求f(x). (4)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x). (5)设周长为a(a>0)的等腰三角形,其腰长为x,底边长为y,试将y表示为x的函数,并求它的定义域和值域.
(1)分析:本题相当于x=x-1时的函数值,用代入法可求得函数表达式. 解 ∵f(x)=3x2-1 ∴f(x-1)=3(x-1)2-1=3x2-6x+2 f(x2)=3(x2)2-1=3x4-1 (2)分析:函数f[g(x)]表示将函数f(x)中的x用g(x)来代替而得到的解析式,∴仍用代入法求解. 解 由已知得f[g(x)]=3(2x-1)2+1=12x2-12x+4 法(或观察法). ∴x=(t+1)2代入原式有f(t)=(t+1)2-6(t+1)-7 =t2-4t-12 (t≥-1) 即f(x)=x2-4x-12 (x≥-1) 说明 解法二是用的换元法.注意两种方法都涉及到中间量的问题,必须要确定中间量的范围,要熟练掌握换元法.
(4)分析:本题已给出函数的基本特征,即二次函数,可采用待定系数法求解. 解 设f(x)=ax2+bx+c(a≠0) 由f(0)=2,得c=2.由f(x+1)-f(x)=x-1,得恒等式2ax+ 说明 待定系数是重要的数学方法,应熟练掌握.
(5)解:∵2x+y=a,∴y=a-2x为所求函数式. ∵三角形任意两边之和大于第三边, ∴得2x+2x>a,又∵y>0, 说明 求实际问题函数表达式,重点是分析实际问题中数量关系并建立函数解析式,其定义域与值域,要考虑实际问题的意义.
延伸阅读:
求一次函数的全部知识点展开全部 一. 变量与常量 1)在某一个变化过程中,取同一数值的量叫做常量。在某一个变化过程中,取不同的数值的量叫做变量。 2)在某一个变化过程中,有两个变量:x和y,当x取每一个值时...
一次函数知识点1、正比例函数 一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数. 2、正比例函数图象和性质 一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1...
求一次函数的知识点“函数”的概念是17世纪时从对各种运动问题的研究和对机械运动规律的考察中形成的。“函数”这个词用作数学术语最早是德国数学家莱布尼茨于1692年在考虑由次切线的变化来确...
8年级数学一次函数要点一、知识要点: 1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。 注意:(1)k≠0,否则自变量x的最高次项的系数不为1; (2)当b=0时,y=kx,y叫x的正...
java里解释一下什么是构造函数每创建一个类的实例都去初始化它的所有变量是乏味的。如果一个对象在被创建时就完成了所有的初始工作,将是简单的和简洁的。因此,Java在类里提供了一个特殊的成员函数,叫做构造...
Java中构造函数是什么?它应该具体怎么用呢是构造方法,不是构造函数,后者是C++的概念首先要注意的是Java的构造器并不是函数,所以他并不能被继承,这在我们extends的时候写子类的构造器时比较的常见,即使子类构造器参数和父...
在Java中构造函数是什么java构造函数,也叫构造方法,java类中的一种特殊方法,方法名与类名相同,一般用来初始化一些成员变量 当要生成一个类的对象(实例)的时候就会调用类的构造函数 如果不显示声明类的构...
函数的单调性函数的单调性也叫函数的增减性.函数的单调性是对某个区间而言的,它是一个局部概念. 增函数与减函数 一般地,设函数f(x)的定义域为I: 如果对于属于I内某个区间上的任意两个自变...
高一数学必修1函数单调性高一单调性判断是 用 定义法。 具体为 任取定义域上的某两个自变量 x1>x2 作差: 若 f(x1)-f(x2)>0 则f(x1)>f(x2) 则为增函数 反之、、、则为减函数。 单调性一般解释为:如果...