范文无忧网公文文书入党入团

数学思想都有哪些

02月25日 编辑 fanwen51.com

[1小学数学中常见的数学思想方法有哪些]《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》——小学数学教学中渗透数学思想方法思考与实践汇报:兆麟小学农丰小学兰陵小学今天由我们三人汇报的题目是:《领悟数学思想...+阅读

数学思想都有哪些

一,函数与方程的思想 函数描述了客观世界中相互关联的量之间的依存关系,是对问题本身的数量特征及制约关系的一种刻划。因此函数思想的实质是用联系和变化的观点提出数学对象之间的数量关系,并用映射给予严格的形式。对函数思想的研究,离不开函数的知识和应用这个基础。从这个意义上说,函数几乎成为贯穿中学数学的一条主线。中学的函数思想,应包括建立函数模型解决问题的意识、函数概念和性质的广泛运用、函数图象的应用。与此相衔接的有方程的思想、极限的思想,以及数列、不等式等知识。 方程的内容在中学阶段也同样经历了由浅入深的历程。其中最重要的变化是从具有确定解的方程,发展到解连续变化的方程;从注重解的数值特征,转向方程的几何意义,另外还有方程与多方面因素的相互联系。方程的思想是在这样的过程中逐步培养起来的。其中当然包含了通过设立未知量建立相等关系,即把未知看作已知的意识,还有如何用方程(方程组)的知识解决问题等等。 函数思想与方程思想的联系十分密切。如解方程f(x)=0就是求函数y=f(x)当函数值为零时自变量x的值;用函数y=f(x) 与 y=g(x)图象的“交轨”方法,可以求出或讨论方程f(x)=g(x)的根;参数方程是一种“函数组”化的方程,等等。这种联系提供了解决问题过程中转化的依据。 二,数形结合的思想 数形结合是根据数量与图形之间的关系,认识研究对象的数学特征、寻找解决问题的方法的一种数学思想方法。在中学数学中,数形结合的思想从渗透到形成和运用,经历了三个主要阶段: 1. 数——形对应 它是数形结合的基础。主要通过初中、高

一、高二的新授课阶段的学习逐步领悟和掌握的; 2. 数——形转化 它体现了数与形的关系在解决问题的过程中,如何作为一种方法而得到运用的。在新授课时这类例子已相当普遍(例如解析法、图解法等),在高三一轮复习中,则要使之系统化; 3. 数——形分工 这里指的是把应用数形结合思想作为解决问题过程中的一种策略,是数学规律性与灵活性的融合,也是本节主要内容。 从内容上看,数形结合的渠道主要有:

(1) 平面几何中的一些算法(主要是与解三角形有关的计算);

(2) 解析几何中点与坐标、曲线与方程、区域(区间)与不等式的对应;

(3) 函数与它的图象以及有关的几何变换;

(4) 三角函数的概念;复数的几何意义;

小学数学思想与方法有哪些

1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想.对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想.联系的一种思想方法如直线上的点(数轴)与表示具体的数是一一对应.如直线上的点(数轴)与表示具体的数是一一对应.

2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法.假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、当调整,最后找到正确答案的一种思想方法.假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路.具体,从而丰富解题思路.

3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段.在教学分数应用题中,比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段.在教学分数应用题中,教师善于引导学生比较,题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径.知和未知数量变化前后的情况

4、符号化思想方法、用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想.用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想.如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息.如定律、量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息.如定律、公式、等.公式、

5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想.类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想.如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式.加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式.类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁.理解,而且使公式的记忆变得顺水推舟的自然和简洁.

6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的.如几何的等积变换、转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的.如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲*1/乙.公式的变形等,在计算中也常用到甲乙甲乙

7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准.如自然数的分类,分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准.如自然数的分类,若体现对数学对象的分类及其分类的标准整除分奇数和偶数;按约数的个数分质数和合数.又如三角形可以按边分,也可以按角分.按能否被 2 整除分奇数和偶数;按约数的个数分质数和合数.又如三角形可以按边分,也可以按角分.不同的分类标准就会有不同的分类结果,从而产生新的概念.对数学对象的正确、合理分类取决于分类标准的正确、合理性,就会有不同的分类结果,从而产生新的概念.对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构.的分类有助于学生对知识的梳理和建构.

8、集合思想方法 集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法.集合思想就是运用集合的概念、逻辑语言、运算、图形等来解决数学问题或非纯数学问题的思想方法.小学采用直观手段,利用图形和实物渗透集合思想.在讲述公约数和公倍数时采用了交集的思想方法.利用图形和实物渗透集合思想.在讲述公约数和公倍数时采用了交集的思想方法.

9、数形结合思想方法数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,数和形是数学研究的两个主要对象,数离不开形,形离不开数,一方面抽象的数学概念,复杂的数量关系,借助图形使之直观化、形象化、简单化.另一方面复杂的形体可以用简单的数量关系表示.在解应用题中常常借助线段图的直观帮助分析数量关系.助分析数量关系.

10、统计思想方法:统计思想方法:小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法.小学数学中的统计图表是一些基本的统计方法,求平均数应用题是体现出数据处理的思想方法.

11、极限思想方法:极限思想方法:事物是从量变到质变的,事物是从量变到质变的,极限方法的实质正是通过量变的无...

延伸阅读:

初中数学模型思想有哪些数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的...

小学数学思想方法有哪些1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。对应是人们对两个集合因素之间的联系的一种思想...

小学数学中常用的数学思想方法有哪些小学数学常用的教学方法有六种,分别是: 讲授法、谈话法、讨论法、练习法、演示法、动手操作法、启发法 1、讲授法 讲授法是教师运用口头语言向学生描绘情境、叙述事实、解释概...

数学解题思想有哪些建模,归类 1.函数思想: 把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。 2.数形结合思想: 把代数和几何相结合,例如对几何问...

初中数学有哪些解题思想初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。1. 对应的思想和方法:在初一代数入门教学...

结合道家思想的著名理论都有哪些《周易参同契》是关於炼丹术的最早理论,被后人称为「丹经王」,它是对以前还丹金液烧炼技术的总结。「参同契」是指将易学、黄老、炉火三者综合为一:太易性情,各如其度;炉火之事,真...

小学数学思想方法有哪些数学广角所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现...

初中数学思想方法有哪些中学数学中的数学思想方法 数学思想方法,从接受的难易程度可分为三个层次: 一是基本具体的数学 方法,如配方法、换元法、待定系数法、归纳法与演绎法等;二是科学的逻辑方 法,如观...

数学方法和思想有哪些1.函数思想: 把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。 2.数形结合思想: 把代数和几何相结合,例如对几何问题用代数...

推荐阅读
图文推荐
栏目列表