[反比例函数特殊知识总结]形如 y=k/x(k≠0的常数,x≠0,y≠0) 的函数,叫做反比例函数。y=k/x=k·1/x=kx-1反比例函数的特点:y=k/x→xy=k自变量x的取值范围是不等于0的一切实数。反比例函数图像性质:反比例...+阅读
一次函数: 正比例:在一次函数中,y=kx(k≠0)为正比例函数 图像:当k〉0时,y随x的值增大而增大, 当k〈0时,y随x的值增大而减小。 二次函数知识点总结 1.定义:一般地,如果 是常数, ,那么 叫做 的二次函数. 2.二次函数 的性质
(1)抛物线 的顶点是坐标原点,对称轴是 轴.
(2)函数 的图像与 的符号关系. ①当 时 抛物线开口向上 顶点为其最低点; ②当 时 抛物线开口向下 顶点为其最高点.
(3)顶点是坐标原点,对称轴是 轴的抛物线的解析式形式为 . 3.二次函数 的图像是对称轴平行于(包括重合) 轴的抛物线. 4.二次函数 用配方法可化成: 的形式,其中 . 5.二次函数由特殊到一般,可分为以下几种形式:① ;② ;③ ;④ ;⑤ . 6.抛物线的三要素:开口方向、对称轴、顶点. ① 的符号决定抛物线的开口方向:当 时,开口向上;当 时,开口向下; 相等,抛物线的开口大小、形状相同. ②平行于 轴(或重合)的直线记作 .特别地, 轴记作直线 . 7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法
(1)公式法: ,∴顶点是 ,对称轴是直线 .
(2)配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),对称轴是直线 .
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线 中, 的作用
(1) 决定开口方向及开口大小,这与 中的 完全一样.
(2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线 ,故:① 时,对称轴为 轴;② (即 、 同号)时,对称轴在 轴左侧;③ (即 、 异号)时,对称轴在 轴右侧.
(3) 的大小决定抛物线 与 轴交点的位置. 当 时, ,∴抛物线 与 轴有且只有一个交点(0, ): ① ,抛物线经过原点; ② ,与 轴交于正半轴;③ ,与 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 轴右侧,则 . 10.几种特殊的二次函数的图像特征如下: 函数解析式 开口方向 对称轴 顶点坐标 当 时 开口向上 当 时 开口向下 ( 轴) (0,0) ( 轴) (0, ) ( ,0) ( , ) ( ) 11.用待定系数法求二次函数的解析式
(1)一般式: .已知图像上三点或三对 、 的值,通常选择一般式.
(2)顶点式: .已知图像的顶点或对称轴,通常选择顶点式.
(3)交点式:已知图像与 轴的交点坐标 、 ,通常选用交点式: . 12.直线与抛物线的交点
(1) 轴与抛物线 得交点为(0, ). (2)与 轴平行的直线 与抛物线 有且只有一个交点( , ).
(3)抛物线与 轴的交点 二次函数 的图像与 轴的两个交点的横坐标 、 ,是对应一元二次方程 的两个实数根.抛物线与 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点 抛物线与 轴相交; ②有一个交点(顶点在 轴上) 抛物线与 轴相切; ③没有交点 抛物线与 轴相离.
(4)平行于 轴的直线与抛物线的交点 同
(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为 ,则横坐标是 的两个实数根.
(5)一次函数 的图像 与二次函数 的图像 的交点,由方程组 的解的数目来确定:①方程组有两组不同的解时 与 有两个交点; ②方程组只有一组解时 与 只有一个交点;③方程组无解时 与 没有交点.
延伸阅读:
三角函数知识总结1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(π2-a)=cos(a) cos(π2-a)=sin(a) sin(π2+a)=cos(a) cos(π2+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+...
三角函数知识点谁有啊急需·平方关系:三角函数sin^2(α)+cos^2(α)=1 cos^2(a)=(1+cos2a)/2 tan^2(α)+1=sec^2(α) sin^2(a)=(1-cos2a)/2 cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα...
高一数学必修1函数概念知识总结1、指数函数 ( 且 ),其中 是自变量, 叫做底数,定义域是R 2、若 ,则 叫做以 为底 的对数。记作: ( , ) 其中, 叫做对数的底数, 叫做对数的真数。 注:指数式与对数式的互化公式: 3、对数的性...
所有函数的总结一、函数的概念与分类 [函数与反函数] 设D是给定的一个数集.若有两个变量x和y,当变量x在D中取某个特定值时,变量y依确定的关系f也有一个确定的值,则称y是x的函数,f称为D上的一个...
数学函数知识点总结展开全部数学函数知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却...
高中所有函数图象一次函数 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx (k为常数,k≠0) 二、一次函数的性质: 1.y...
谁能总结函数图像知识点高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是...
高中数学函数包括三角函数和其他知识的总结1)高中函数的变量:因变量,自变量。 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 (2)一次函数:①若两个变量 , 间的关系式...
高一函数知识点总结人教版一、函数的概念与表示 1、映射 (1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B...