[谁能帮我总结一下数学的椭圆与双曲线的知识点]1.椭圆的几何性质 根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一.根据曲线的条件列出方程.如果说是解析几何的手段,那么根据曲线的方程研...+阅读
能帮我总结一下初二函数的知识点吗
二次函数知识点总结
1.定义:一般地,如果 是常数, ,那么 叫做 的二次函数.
2.二次函数 的性质
(1)抛物线 的顶点是坐标原点,对称轴是 轴.
(2)函数 的图像与 的符号关系.
①当 时 抛物线开口向上 顶点为其最低点;
②当 时 抛物线开口向下 顶点为其最高点.
(3)顶点是坐标原点,对称轴是 轴的抛物线的解析式形式为 .
3.二次函数 的图像是对称轴平行于(包括重合) 轴的抛物线.
4.二次函数 用配方法可化成: 的形式,其中 .
5.二次函数由特殊到一般,可分为以下几种形式:① ;② ;③ ;④ ;⑤ .
6.抛物线的三要素:开口方向、对称轴、顶点.
① 的符号决定抛物线的开口方向:当 时,开口向上;当 时,开口向下;
相等,抛物线的开口大小、形状相同.
②平行于 轴(或重合)的直线记作 .特别地, 轴记作直线 .
7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.
8.求抛物线的顶点、对称轴的方法
(1)公式法: ,∴顶点是 ,对称轴是直线 .
(2)配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),对称轴是直线 .
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.
9.抛物线 中, 的作用
(1) 决定开口方向及开口大小,这与 中的 完全一样.
(2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线
,故:① 时,对称轴为 轴;② (即 、 同号)时,对称轴在 轴左侧;③ (即 、 异号)时,对称轴在 轴右侧.
(3) 的大小决定抛物线 与 轴交点的位置.
当 时, ,∴抛物线 与 轴有且只有一个交点(0, ):
① ,抛物线经过原点; ② ,与 轴交于正半轴;③ ,与 轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 轴右侧,则 .
10.几种特殊的二次函数的图像特征如下:
函数解析式 开口方向 对称轴 顶点坐标
初二数学函数知识点
初二数学《函数》知识点总结
(一)平面直角坐标系
1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系
2、已知点的坐标找出该点的方法: 分别以点的横坐标、纵坐标在数轴上表示的点为垂足,作x轴y轴的的垂线,两垂线的交点即为要找的点。
3、已知点求出其坐标的方法: 由该点分别向x轴y轴作垂线,垂足在x轴上的坐标是改点的横坐标,垂足在y轴上的坐标是该点的纵坐标。
4、各个象限内点的特征: 第一象限:(+,+) 点P(x,y),则x>0,y>0; 第二象限:(-,+) 点P(x,y),则x0; 第三象限:(-, -) 点P(x,y),则x第四象限:(+,-) 点P(x,y),则x>0,y
5、坐标轴上点的坐标特征: x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。
6、点的对称特征:已知点P(m,n), 关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y轴的对称点坐标是(-m,n) 纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n) 横,纵坐标都反号
7、平行于坐标轴的直线上的点的坐标特征: 平行于x轴的直线上的任意两点:纵坐标相等; 平行于y轴的直线上的任意两点:横坐标相等。
8、各象限角平分线上的点的坐标特征: 第
一、三象限角平分线上的点横、纵坐标相等。 点P(a,b)关于第
一、三象限坐标轴夹角平分线的对称点坐标是(b, a) 第
二、四象限角平分线上的点横纵坐标互为相反数。 点P(a,b)关于第
二、四象限坐标轴夹角平分线的对称点坐标是(-b,-a)
9、点P(x,y)的几何意义: 点P(x,y)到x轴的距离为 |y|, 点P(x,y)到y轴的距离为 |x|。 点P(x,y)到坐标原点的距离为
10、两点之间的距离: X轴上两点为A 、B |AB| Y轴上两点为C 、D |CD| 已知A 、B AB|=
11、中点坐标公式:已知A 、B M为AB的中点 则:M=( , )
12、点的平移特征: 在平面直角坐标系中, 将点(x,y)向右平移a个单位长度,可以得到对应点( x-a,y); 将点(x,y)向左平移a个单位长度,可以得到对应点(x+a ,y); 将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b); 将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)。 注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。
(二)函数的基本知识: 知识网络图 基本概念
1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。 *判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应
3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:
(1)关系式为整式时,函数定义域为全体实数;
(2)关系式含有分式时,分式的分母不等于零;
(3)关系式含有二次根式时,被开放方数大于等于零;
(4)关系式中含有指数为零的式子时,底数不等于零;
(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
5、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
(三)正比例函数和一次函数
1、正比例函数及性质 一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数. 注:正比例函数一般形式 y=kx (k不为零) ① k不为零 ② x指数为1 ③ b取零 当k>0时,直线y=kx经过
三、一象限,从左向右上升,即随x的增大y也增大;当k0时,图像经过
一、三象限;k0,y随x的增大而增大;k
初二数学函数有哪些学习重点
知识点总结
一.函数的相关概念:
1.变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,保持不变的量叫做常量。
注意:变量和常量往往是相对而言的,在不同研究过程中,常量和变量的身份是可以相互转换的.
在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
说明:函数体现的是一个变化的过程,在这一变化过程中,要着重把握以下三点:
(1)只能有两个变量.
(2)一个变量的数值随另一个变量的数值变化而变化.
(3)对于自变量的每一个确定的值,函数都有唯一的值与之对应.
二.函数的表示方法和函数表达式的确定:
函数关系的表示方法有三种:
1..解析法:两个变量之间的关系,有时可以用一个含有这两个变量的等式表示,这种表示方法叫做解析法.用解析法表示一个函数关系时,因变量y放在等式的左边,自变量y的代数式放在右边,其实质是用x的代数式表示y;
注意:解析法简单明了,能准确地反映整个变化过程中自变量与因变量的关系,但不直观,且有的函数关系不一定能用解析法表示出来.
2.列表法:把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系的方法叫列表法;
注意:列表法优点是一目了然,使用方便,但其列出的对应值是有限的,而且从表中不易看出自变量和函数之间的对应规律。
3..图象法:用图象表示函数关系的方法叫做图象法.图象法形象直观,是研究函数的一种很重要的方法。
三.函数(或自变量)值、函数自变量的取值范围
2.函数求值的几种形式:
(1)当函数是用函数表达式表示时,示函数的值,就是求代数式的值;
(2)当已知函数值及表达式时,赌注相应自变量的值时,其实质就是解方程;
(3)当给定函数值的取值范围,求相应的自变量的取值范围时,其实质就是解不等式(组)。
3..函数自变量的取值范围是指使函数有意义的自变量的取值的全体.求自变量的取值范围通常从两个方面考虑:一是要使函数的解析式有意义;二是符合客观实际.下面给出一些简单函数解析式中自变量范围的确定方法.
(1)当函数的解析式是整式时,自变量取任意实数(即全体实数);
(2)当函数的解析式是分式时,自变量取值是使分母不为零的任意实数;
(3)当函数的解析式是开平方的无理式时,自变量取值是使被开方的式子为非负的实数;
(4)当函数解析式中自变量出现在零次幂或负整数次幂的底数中时,自变量取值是使底数不为零的实数。
说明:当函数表达式表示实际问题或几何问题时,自变量取值范围除应使函数表达式有意义外,还必须符合实际意义或几何意义。
在一个函数关系式中,如果同时有几种代数式时,函数自变量取值范围应是各种代数式中自变量取值范围的公共部分。
四.函数的图象
1.函数图象的画法
确定了函数解析式,要画出函数的图象。一般分为以下三个步骤:
(1)列表:取自变量的一些值,计算出对应的函数值,由这一系列的对应值得到一系列的有序实数对;
(2)描点:在直角坐标系中,描出这些有序实数对的对应点;
(3)连线:用平滑的曲线依次把这些点连起来,即可得到这个函数的图象。
这些是我们老师讲过的复习提纲,希望对你有所帮助!
常见考法: (1)考查函数的概念;
(2)求函数值或自变量的取值范围。
初二上学期的函数全部知识点
初二数学(上)应知应会的知识点 因式分解 1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化. 2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数•相同因式的最低次幂. 注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:
(1)平方差公式: a2-b2=(a+ b)(a- b); (2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2. 5.因式分解的注意事项:
(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字;
(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;
(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;
(4)因式分解的最后结果要求每一个因式的首项符号为正;
(5)因式分解的最后结果要求加以整理;
(6)因式分解的最后结果要求相同因式写成乘方的形式. 6.因式分解的解题技巧:
(1)换位整理,加括号或去括号整理;
(2)提负号;
(3)全变号;
(4)换元;
(5)配方;
(6)把相同的式子看作整体;
(7)灵活分组;
(8)提取分数系数;
(9)展开部分括号或全部括号;
(10)拆项或补项. 7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q是完全平方式 ”. 分式 1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为 的形式,如果B中含有字母,式子 叫做分式. 2.有理式:整式与分式统称有理式;即 . 3.对于分式的两个重要判断:
(1)若分式的分母为零,则分式无意义,反之有意义;
(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:
(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;
(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即
(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单. 5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解. 6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则: . 8.分式的乘方: . 9.负整指数计算法则:
(1)公式: a0=1(a≠0), a-n= (a≠0);(2)正整指数的运算法则都可用于负整指数计算;
(3)公式: , ;
(4)公式: (-1)-2=1, (-1)-3=-1. 10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母. 11.最简公分母的确定:系数的最小公倍数•相同因式的最高次幂. 12.同分母与异分母的分式加减法法则: . 13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x是未知数,a和b是用字母表示的已知数,对x来说,字母a是x的系数,叫做字母系数,字母b是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数. 14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0. 15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程. 16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根. 17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根. 18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方 1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根是x);注意:
(1)a叫x的平方数,
(2)已知x求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算. 2.平方根的性质:
(1)正数的平方根是一对相反数;
(2)0的平方根还是0;(3)负数没有平方根. 3.平方根的表示方法:a的平方根表示为 和 .注意: 可以看作是一个数,也可以认为是一个数开二次方的运算. 4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为 .注意:0的算术平方根还是0. 5.三个重要非负数: a2≥0 ,|a|≥0 , ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式:
(1) ; (a≥0) (2) . 7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根是x).注意:
(1)a叫x的立方数;
(2)a的立方根表示为 ;即把a开三次方. 8.立...
延伸阅读:
高中数学文科知识点有哪些啊请帮我总结一下1.集合、简易逻辑 理解集合、子集、补集、交集、并集的概念; 了解空集和全集的意义; 了解属于、包含、相等关系的意义; 掌握有关的术语和符号,并会用它们正确表示一些简单的集合...
谁能帮我总结一下初中英语的易错点1.当定语从句的引导词在从句中作主语时,定语从句中谓语动词的形式是根据先行词而定的。 【误】People who has been invited to the party are very excited. 【正】People w...
谁能帮我总结一下关于make的短语make out 辨认出、看出; make up 1、编造,虚构(故事、借口) 2、化妆 3、组成,构成 4、补足(数额) 5、和解 make up sth 补上,补做(误了的事) make up for sth (用其他方式)弥补,使平衡 ma...
例会总结怎么写?谁能帮我编一下吗例会总结 2012年7月16日上午,本部门工作例会在1楼办公室在召开。秘书长助理、办公室主任、各营业大区负责人参加会议。 秘书长提出,为了增强工作的计划性,及时总结经验,加强指导...
初二数学第一学期知识点帮我总结一下我只能给你总结一些知识点,见谅见谅 初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,代数略大于几何(我不知道你是哪里的人,反正在我们山东省济南市的中考中是这...
谁能帮我总结一下初中化学的重要知识点一、物质的学名、俗名及化学式 ⑴金刚石、石墨:C⑵水银、汞:Hg (3)生石灰、氧化钙:CaO(4)干冰(固体二氧化碳):CO2 (5)盐酸、氢氯酸:HCl(6)亚硫酸:H2SO3 (7)氢硫酸: H2S (8)熟石灰、消...
谁能帮我总结下电机拖动的基础知识电机基础知识1.什么是直流电动机?它是如何工作的? 能够把输入的直流电变为机械能输出的机械设备,叫做直流电动机。它是根据带电导体在磁场中受力的作用原理而制成的。 当外接电...
谁能帮我写一下库房季度总结啊仓库管理工作总结时间过得真快,转眼2005年即将结束,迎来的是2006年新的开始,在这期间回顾2005年1—10月份的工作,主要有以下几条: 一、 仓库保管员的工作 1、 负责仓库大库(原辅料...
能帮我写一下流动人口协会的实施方案吗坚持把做好流动人口计划生育工作列为各部门、各村工作的重中之重。准确掌握流动人口的基本情况,实现从事后的被动管理转向事前的有序管理,计生干部必须做到底数清、情况明、管...