范文无忧网演讲发言笔记心得

谈小学数学课堂教学中“悬念”的设置

03月01日 编辑 fanwen51.com

[《名师课堂教学艺术》读后感]今天,又拿起了《小学语文名师课堂教学艺术》这本书这是我上学期买的书了。书中介绍了目前活跃在小学语文届的特级教师的课例及特色教学。从书上不但欣赏到了这些名师的风采,而...+阅读

实践证明:学生在学习中产生的这种心理需求具有巨大的潜在能量,它能激发学生的学习动机和兴趣,丰富想象力,吸引注意力,增强记忆力,开拓思维。因此,在小学数学教学中巧妙地设置悬念的契机,常可以表现数学的魅力和艺术感。本文将结合小学数学课堂教学谈谈实际教学中悬念的设置方法。

一、设“疑”

“学起于思,思源于疑”,“学贵知疑,小

疑则小进,大疑则大进”,疑能使心理上感到困惑,产生认知冲突,进而拨动其思维之弦。要使学生生“疑”,教师就要不失时机地激“疑”,可激“疑”比较好的办法就是设“疑”。如在教学“年、月、日”时,教师可先出示题:小明今年12岁,他只过了3个生日,你知道这是怎么回事吗?这时学生情绪高涨,对问题产生了“疑”,心理产生了悬念。这种疑制成悬念激发了学生强烈的求知欲望和学习兴趣。随即教师指出:等你们学了今天的课后就知道了,这样从学习一开始,就把学生推到了主动探索的主体地位上。又如在教学加减法的一些简便算法时,我说:“今天我和同学们来个口算比赛”。接着逐个出示:582+299、543+297、786-397等口算题。结果每道题都是我又对又快。这样学生产生了疑,迫切想知道这种计算方法,从而造成了知识上的悬念,提高了学生的求知情趣。

二、精“问”

一个恰当而耐人寻味的问题可激起学生思维的浪花。因此,教学中适当地选择、安排提出好的问题能吸引学生的注意力,唤起好胜心和创造力,是创设悬念的有效方法。如在教学“圆的认识”时,我提出如下问题:“同学们,你们知道自行车的车轮是什么样的?”学生回答:“是圆形的”。“如果是长方形或三角形行不行?”学生笑着连连摇头。

我又问:“如果车轮是椭圆形的呢?”(随手在黑板上画出椭圆形)。学生急着回答:“不行,没法骑”。我紧接着追问:“为什么圆就行呢?”学生一听,马上活跃起来,纷纷议论。这一系列的提问不仅使学生对所要解决的问题产生悬念,而且为以后的教学提供了必要的心理准备。学生“找结论”的思维之弦绷得很紧,而且这样找到的结论理解、记忆的也很牢固。

三、制“错”

教学时有意搜集或编制一些学生易犯而又意识不到的错误方法和结论,使学生的思维产生错与对之间的交叉冲突和悬念,进而引导学生找出致误原因,克服思维定势。我在教学四则混合运算时,出示了一道容易出错的复习题:27-27÷3。学生在草本上计算后,大多数同学的计算步骤如下:①27-27÷3=0÷3=0造成计算错误的原因,是因为强信息:“27-27”,削弱了计算顺序这一信息,造成了计算的差错。而只有个别同学的计算步骤是:②27-27÷3=27-9=18出现这两种情况,乃在我的意料之中。我顺水推舟,把这两种计算过程写在黑板上,问这两种计算哪种计算正确?顿时,同学们纷纷争论:有的说第一种解答正确;有的说第二种解答正确。我见学生的情绪高涨,对问题的答案有着非常浓厚的兴趣,于是说:“到底哪种解答方法正确呢?我们学习四则混合运算后,就知道答案了。接着,我板书“四则混合运算”,讲授新课,效果很好。实践证明,有目的地设计一些容易做错的题目,造成“悬念”,有助于提高学习兴趣,培养学生学习的主动性。

四、创“难”

创“难”可在某堂课或某段知识前抛出,使学生看到所学知识最高点,经常保持一种学习的未完成感。如在教学“循环小数”时,出示两组题:①1.6÷0.25,15÷0.06;②10÷6,70.7÷33。学生很快计算出第一组题的得数,但在计算第二组题时,学生发现怎么除也除不完。“怎么办?”“如何写出商呢?”学生求知与教学内容之间形成一种“不协调”。好奇与强烈的求知欲望使学生的注意力集中指向困惑之处。这样以“难”制成“悬念”,使学生在学习循环小数时心中始终有了一个目标,激发了学习的积极主动性。

五、求“变”

求“变”就是在教学中对典型的问题进行有目的、多角度、多层次的演变,使学生逐步理解和掌握此类数学问题的一般规律和本质属性,也使学生对学习的始终感到“新”、“奇”,由此培养学生思维的灵活性。例如:学习百分数应用题后,出示下列变式练习:1、苹果树20棵,梨树24棵,苹果树是梨树的几分之几?2、苹果树20棵,梨树24棵,梨树是苹果树的几倍?3、苹果树20棵,梨树24棵,苹果树是梨树的百分之几?4、苹果树20棵,梨树24棵,梨树是苹果树的百分之几?5、苹果树20棵,梨树24棵,苹果树比梨树少几分之几?6、苹果树20棵,梨树24棵,苹果树比梨树少百分之几?这样的变换使学生再度陷入问题的探索之中,而且这种求“变”,将会培养学生的发散思维,为学生思维潜力的发挥起到一个创景设情的作用。

六、留“尾”

留“尾”指在每节课(或每段知识)结束时,设法在学生心理上留点“余味”,为后继课涂上点“神秘色彩”,激励他们进一步探索和解决问题。例如:新授 12全文查看

实践证明:学生在学习中产生的这种心理需求具有巨大的潜在能量,它能激发学生的学习动机和兴趣,丰富想象力,吸引注意力,增强记忆力,开拓思维。因此,在小学数学教学中巧妙地设置悬念的契机,常可以表现数学的魅力和艺术感。本文将结合小学数学课堂教学谈谈实际教学中悬念的设置方法。

一、设“疑”

“学起于思,思源于疑”,“学贵知疑,小疑则小进,大疑则大进”,疑能使心理上感到困惑,产生认知冲突,进而拨动其思维之弦。要使学生生“疑”,教师就要不失时机地激“疑”,可激“疑”比较好的办法就是设“疑”。如在教学“年、月、日”时,教师可先出示题:小明今年12岁,他只过了3个生日,你知道这是怎么回事吗?这时学生情绪高涨,对问题产生了“疑”,心理产生了悬念。这种疑制成悬念激发了学生强烈的求知欲望和学习兴趣。随即教师指出:等你们学了今天的课后就知道了,这样从学习一开始,就把学生推到了主动探索的主体地位上。又如在教学加减法的一些简便算法时,我说:“今天我和同学们来个口算比赛”。接着逐个出示:582+299、543+297、786-397等口算题。结果每道题都是我又对又快。这样学生产生了疑,迫切想知道这种计算方法,从而造成了知识上的悬念,提高了学生的求知情趣。

二、精“问”

一个恰当而耐人寻味的问题可激起学生思维的浪花。因此,教学中适当地选择、安排提出好的问题能吸引学生的注意力,唤起好胜心和创造力,是创设悬念的有效方法。如在教学“圆的认识”时,我提出如下问题:“同学们,你们知道自行车的车轮是什么样的?”学生回答:“是圆形的”。“如果是长方形或三角形行不行?”学生笑着连连摇头。

我又问:“如果车轮是椭圆形的呢?”(随手在黑板上画出椭圆形)。学生急着回答:“不行,没法骑”。我紧接着追问:“为什么圆就行呢?”学生一听,马上活跃起来,纷纷议论。这一系列的提问不仅使学生对所要解决的问题产生悬念,而且为以后的教学提供了必要的心理准备。学生“找结论”的思维之弦绷得很紧,而且这样找到的结论理解、记忆的也很牢固。

三、制“错”

教学时有意搜集或编制一些学生易犯而又意识不到的错误方法和结论,使学生的思维产生错与对之间的交叉冲突和悬念,进而引导学生找出致误原因,克服思维定势。我在教学四则混合运算时,出示了一道容易出错的复习题:27-27÷3。学生在草本上计算后,大多数同学的计算步骤如下:①27-27÷3=0÷3=0造成计算错误的原因,是因为强信息:“27-27”,削弱了计算顺序这一信息,造成了计算的差错。而只有个别同学的计算步骤是:②27-27÷3=27-9=18出现这两种情况,乃在我的意料之中。我顺水推舟,把这两种计算过程写在黑板上,问这两种计算哪种计算正确?顿时,同学们纷纷争论:有的说第一种解答正确;有的说第二种解答正确。我见学生的情绪高涨,对问题的答案有着非常浓厚的兴趣,于是说:“到底哪种解答方法正确呢?我们学习四则混合运算后,就知道答案了。接着,我板书“四则混合运算”,讲授新课,效果很好。实践证明,有目的地设计一些容易做错的题目,造成“悬念”,有助于提高学习兴趣,培养学生学习的主动性。

四、创“难”

创“难”可在某堂课或某段知识前抛出,使学生看到所学知识最高点,经常保持一种学习的未完成感。如在教学“循环小数”时,出示两组题:①1.6÷0.25,15÷0.06;②10÷6,70.7÷33。学生很快计算出第一组题的得数,但在计算第二组题时,学生发现怎么除也除不完。“怎么办?”“如何写出商呢?”学生求知与教学内容之间形成一种“不协调”。好奇与强烈的求知欲望使学生的注意力集中指向困惑之处。这样以“难”制成“悬念”,使学生在学习循环小数时心中始终有了一个目标,激发了学习的积极主动性。

五、求“变”

求“变”就是在教学中对典型的问题进行有目的、多角度、多层次的演变,使学生逐步理解和掌握此类数学问题的一般规律和本质属性,也使学生对学习的始终感到“新”、“奇”,由此培养学生思维的灵活性。例如:学习百分数应用题后,出示下列变式练习:1、苹果树20棵,梨树24棵,苹果树是梨树的几分之几?2、苹果树20棵,梨树24棵,梨树是苹果树的几倍?3、苹果树20棵,梨树24棵,苹果树是梨树的百分之几?4、苹果树20棵,梨树24棵,梨树是苹果树的百分之几?5、苹果树20棵,梨树24棵,苹果树比梨树少几分之几?6、苹果树20棵,梨树24棵,苹果树比梨树少百分之几?这样的变换使学生再度陷入问题的探索之中,而且这种求“变”,将会培养学生的发散思维,为学生思维潜力的发挥起到一个创景设情的作用。

六、留“尾”

留“尾”指在每节课(或每段知识)结束时,设法在学生心理上留点“余味”,为后继课涂上点“神秘色彩”,激励他们进一步探索和解决问题。例如:新授[page_break]小数除以整数,除总结好本课内容外,还可提出:“21.45÷15,小数除以整数,如果把15缩小100倍,21.45÷15→21.45÷0.15,小数除以小数,又怎样计算呢?”

这样留尾既总结了本节课的教学内容,又为下一节课的教学作了孕伏,促使学生去发现新旧知识间的联系,主动建立新知结构。

12全文查看

实践证明:学生在学习中产生的这种心理需求具有巨大的潜在能量,它能激发学生的学习动机和兴趣,丰富想象力,吸引注意力,增强记忆力,开拓思维。因此,在小学数学教学中巧妙地设置悬念的契机,常可以表现数学的魅力和艺术感。本文将结合小学数学课堂教学谈谈实际教学中悬念的设置方法。

一、设“疑”

“学起于思,思源于疑”,“学贵知疑,小

疑则小进,大疑则大进”,疑能使心理上感到困惑,产生认知冲突,进而拨动其思维之弦。要使学生生“疑”,教师就要不失时机地激“疑”,可激“疑”比较好的办法就是设“疑”。如在教学“年、月、日”时,教师可先出示题:小明今年12岁,他只过了3个生日,你知道这是怎么回事吗?这时学生情绪高涨,对问题产生了“疑”,心理产生了悬念。这种疑制成悬念激发了学生强烈的求知欲望和学习兴趣。随即教师指出:等你们学了今天的课后就知道了,这样从学习一开始,就把学生推到了主动探索的主体地位上。又如在教学加减法的一些简便算法时,我说:“今天我和同学们来个口算比赛”。接着逐个出示:582+299、543+297、786-397等口算题。结果每道题都是我又对又快。这样学生产生了疑,迫切想知道这种计算方法,从而造成了知识上的悬念,提高了学生的求知情趣。

二、精“问”

一个恰当而耐人寻味的问题可激起学生思维的浪花。因此,教学中适当地选择、安排提出好的问题能吸引学生的注意力,唤起好胜心和创造力,是创设悬念的有效方法。如在教学“圆的认识”时,我提出如下问题:“同学们,你们知道自行车的车轮是什么样的?”学生回答:“是圆形的”。“如果是长方形或三角形行不行?”学生笑着连连摇头。

我又问:“如果车轮是椭圆形的呢?”(随手在黑板上画出椭圆形)。学生急着回答:“不行,没法骑”。我紧接着追问:“为什么圆就行呢?”学生一听,马上活跃起来,纷纷议论。这一系列的提问不仅使学生对所要解决的问题产生悬念,而且为以后的教学提供了必要的心理准备。学生“找结论”的思维之弦绷得很紧,而且这样找到的结论理解、记忆的也很牢固。

三、制“错”

教学时有意搜集或编制一些学生易犯而又意识不到的错误方法和结论,使学生的思维产生错与对之间的交叉冲突和悬念,进而引导学生找出致误原因,克服思维定势。我在教学四则混合运算时,出示了一道容易出错的复习题:27-27÷3。学生在草本上计算后,大多数同学的计算步骤如下:①27-27÷3=0÷3=0造成计算错误的原因,是因为强信息:“27-27”,削弱了计算顺序这一信息,造成了计算的差错。而只有个别同学的计算步骤是:②27-27÷3=27-9=18出现这两种情况,乃在我的意料之中。我顺水推舟,把这两种计算过程写在黑板上,问这两种计算哪种计算正确?顿时,同学们纷纷争论:有的说第一种解答正确;有的说第二种解答正确。我见学生的情绪高涨,对问题的答案有着非常浓厚的兴趣,于是说:“到底哪种解答方法正确呢?我们学习四则混合运算后,就知道答案了。接着,我板书“四则混合运算”,讲授新课,效果很好。实践证明,有目的地设计一些容易做错的题目,造成“悬念”,有助于提高学习兴趣,培养学生学习的主动性。

四、创“难”

创“难”可在某堂课或某段知识前抛出,使学生看到所学知识最高点,经常保持一种学习的未完成感。如在教学“循环小数”时,出示两组题:①1.6÷0.25,15÷0.06;②10÷6,70.7÷33。学生很快计算出第一组题的得数,但在计算第二组题时,学生发现怎么除也除不完。“怎么办?”“如何写出商呢?”学生求知与教学内容之间形成一种“不协调”。好奇与强烈的求知欲望使学生的注意力集中指向困惑之处。这样以“难”制成“悬念”,使学生在学习循环小数时心中始终有了一个目标,激发了学习的积极主动性。

五、求“变”

求“变”就是在教学中对典型的问题进行有目的、多角度、多层次的演变,使学生逐步理解和掌握此类数学问题的一般规律和本质属性,也使学生对学习的始终感到“新”、“奇”,由此培养学生思维的灵活性。例如:学习百分数应用题后,出示下列变式练习:1、苹果树20棵,梨树24棵,苹果树是梨树的几分之几?2、苹果树20棵,梨树24棵,梨树是苹果树的几倍?3、苹果树20棵,梨树24棵,苹果树是梨树的百分之几?4、苹果树20棵,梨树24棵,梨树是苹果树的百分之几?5、苹果树20棵,梨树24棵,苹果树比梨树少几分之几?6、苹果树20棵,梨树24棵,苹果树比梨树少百分之几?这样的变换使学生再度陷入问题的探索之中,而且这种求“变”,将会培养学生的发散思维,为学生思维潜力的发挥起到一个创景设情的作用。

六、留“尾”

留“尾”指在每节课(或每段知识)结束时,设法在学生心理上留点“余味”,为后继课涂上点“神秘色彩”,激励他们进一步探索和解决问题。例如:新授[]

实践证明:学生在学习中产生的这种心理需求具有巨大的潜在能量,它能激发学生的学习动机和兴趣,丰富想象力,吸引注意力,增强记忆力,开拓思维。因此,在小学数学教学中巧妙地设置悬念的契机,常可以表现数学的魅力和艺术感。本文将结合小学数学课堂教学谈谈实际教学中悬念的设置方法。

一、设“疑”

“学起于思,思源于疑”,“学贵知疑,小疑则小进,大疑则大进”,疑能使心理上感到困惑,产生认知冲突,进而拨动其思维之弦。要使学生生“疑”,教师就要不失时机地激“疑”,可激“疑”比较好的办法就是设“疑”。如在教学“年、月、日”时,教师可先出示题:小明今年12岁,他只过了3个生日,你知道这是怎么回事吗?这时学生情绪高涨,对问题产生了“疑”,心理产生了悬念。这种疑制成悬念激发了学生强烈的求知欲望和学习兴趣。随即教师指出:等你们学了今天的课后就知道了,这样从学习一开始,就把学生推到了主动探索的主体地位上。又如在教学加减法的一些简便算法时,我说:“今天我和同学们来个口算比赛”。接着逐个出示:582+299、543+297、786-397等口算题。结果每道题都是我又对又快。这样学生产生了疑,迫切想知道这种计算方法,从而造成了知识上的悬念,提高了学生的求知情趣。

二、精“问”

一个恰当而耐人寻味的问题可激起学生思维的浪花。因此,教学中适当地选择、安排提出好的问题能吸引学生的注意力,唤起好胜心和创造力,是创设悬念的有效方法。如在教学“圆的认识”时,我提出如下问题:“同学们,你们知道自行车的车轮是什么样的?”学生回答:“是圆形的”。“如果是长方形或三角形行不行?”学生笑着连连摇头。

我又问:“如果车轮是椭圆形的呢?”(随手在黑板上画出椭圆形)。学生急着回答:“不行,没法骑”。我紧接着追问:“为什么圆就行呢?”学生一听,马上活跃起来,纷纷议论。这一系列的提问不仅使学生对所要解决的问题产生悬念,而且为以后的教学提供了必要的心理准备。学生“找结论”的思维之弦绷得很紧,而且这样找到的结论理解、记忆的也很牢固。

三、制“错”

教学时有意搜集或编制一些学生易犯而又意识不到的错误方法和结论,使学生的思维产生错与对之间的交叉冲突和悬念,进而引导学生找出致误原因,克服思维定势。我在教学四则混合运算时,出示了一道容易出错的复习题:27-27÷3。学生在草本上计算后,大多数同学的计算步骤如下:①27-27÷3=0÷3=0造成计算错误的原因,是因为强信息:“27-27”,削弱了计算顺序这一信息,造成了计算的差错。而只有个别同学的计算步骤是:②27-27÷3=27-9=18出现这两种情况,乃在我的意料之中。我顺水推舟,把这两种计算过程写在黑板上,问这两种计算哪种计算正确?顿时,同学们纷纷争论:有的说第一种解答正确;有的说第二种解答正确。我见学生的情绪高涨,对问题的答案有着非常浓厚的兴趣,于是说:“到底哪种解答方法正确呢?我们学习四则混合运算后,就知道答案了。接着,我板书“四则混合运算”,讲授新课,效果很好。实践证明,有目的地设计一些容易做错的题目,造成“悬念”,有助于提高学习兴趣,培养学生学习的主动性。

四、创“难”

创“难”可在某堂课或某段知识前抛出,使学生看到所学知识最高点,经常保持一种学习的未完成感。如在教学“循环小数”时,出示两组题:①1.6÷0.25,15÷0.06;②10÷6,70.7÷33。学生很快计算出第一组题的得数,但在计算第二组题时,学生发现怎么除也除不完。“怎么办?”“如何写出商呢?”学生求知与教学内容之间形成一种“不协调”。好奇与强烈的求知欲望使学生的注意力集中指向困惑之处。这样以“难”制成“悬念”,使学生在学习循环小数时心中始终有了一个目标,激发了学习的积极主动性。

五、求“变”

求“变”就是在教学中对典型的问题进行有目的、多角度、多层次的演变,使学生逐步理解和掌握此类数学问题的一般规律和本质属性,也使学生对学习的始终感到“新”、“奇”,由此培养学生思维的灵活性。例如:学习百分数应用题后,出示下列变式练习:1、苹果树20棵,梨树24棵,苹果树是梨树的几分之几?2、苹果树20棵,梨树24棵,梨树是苹果树的几倍?3、苹果树20棵,梨树24棵,苹果树是梨树的百分之几?4、苹果树20棵,梨树24棵,梨树是苹果树的百分之几?5、苹果树20棵,梨树24棵,苹果树比梨树少几分之几?6、苹果树20棵,梨树24棵,苹果树比梨树少百分之几?这样的变换使学生再度陷入问题的探索之中,而且这种求“变”,将会培养学生的发散思维,为学生思维潜力的发挥起到一个创景设情的作用。

六、留“尾”

留“尾”指在每节课(或每段知识)结束时,设法在学生心理上留点“余味”,为后继课涂上点“神秘色彩”,激励他们进一步探索和解决问题。例如:新授[p_brk]小数除以整数,除总结好本课内容外,还可提出:“21.45÷15,小数除以整数,如果把15缩小100倍,21.45÷15→21.45÷0.15,小数除以小数,又怎样计算呢?”

这样留尾既总结了本节课的教学内容,又为下一节课的教学作了孕伏,促使学生去发现新旧知识间的联系,主动建立新知结构。

实践证明:学生在学习中产生的这种心理需求具有巨大的潜在能量,它能激发学生的学习动机和兴趣,丰富想象力,吸引注意力,增强记忆力,开拓思维。因此,在小学数学教学中巧妙地设置悬念的契机,常可以表现数学的魅力和艺术感。本文将结合小学数学课堂教学谈谈实际教学中悬念的设置方法。

一、设“疑”

“学起于思,思源于疑”,“学贵知疑,小

疑则小进,大疑则大进”,疑能使心理上感到困惑,产生认知冲突,进而拨动其思维之弦。要使学生生“疑”,教师就要不失时机地激“疑”,可激“疑”比较好的办法就是设“疑”。如在教学“年、月、日”时,教师可先出示题:小明今年12岁,他只过了3个生日,你知道这是怎么回事吗?这时学生情绪高涨,对问题产生了“疑”,心理产生了悬念。这种疑制成悬念激发了学生强烈的求知欲望和学习兴趣。随即教师指出:等你们学了今天的课后就知道了,这样从学习一开始,就把学生推到了主动探索的主体地位上。又如在教学加减法的一些简便算法时,我说:“今天我和同学们来个口算比赛”。接着逐个出示:582+299、543+297、786-397等口算题。结果每道题都是我又对又快。这样学生产生了疑,迫切想知道这种计算方法,从而造成了知识上的悬念,提高了学生的求知情趣。

二、精“问”

一个恰当而耐人寻味的问题可激起学生思维的浪花。因此,教学中适当地选择、安排提出好的问题能吸引学生的注意力,唤起好胜心和创造力,是创设悬念的有效方法。如在教学“圆的认识”时,我提出如下问题:“同学们,你们知道自行车的车轮是什么样的?”学生回答:“是圆形的”。“如果是长方形或三角形行不行?”学生笑着连连摇头。

我又问:“如果车轮是椭圆形的呢?”(随手在黑板上画出椭圆形)。学生急着回答:“不行,没法骑”。我紧接着追问:“为什么圆就行呢?”学生一听,马上活跃起来,纷纷议论。这一系列的提问不仅使学生对所要解决的问题产生悬念,而且为以后的教学提供了必要的心理准备。学生“找结论”的思维之弦绷得很紧,而且这样找到的结论理解、记忆的也很牢固。

三、制“错”

教学时有意搜集或编制一些学生易犯而又意识不到的错误方法和结论,使学生的思维产生错与对之间的交叉冲突和悬念,进而引导学生找出致误原因,克服思维定势。我在教学四则混合运算时,出示了一道容易出错的复习题:27-27÷3。学生在草本上计算后,大多数同学的计算步骤如下:①27-27÷3=0÷3=0造成计算错误的原因,是因为强信息:“27-27”,削弱了计算顺序这一信息,造成了计算的差错。而只有个别同学的计算步骤是:②27-27÷3=27-9=18出现这两种情况,乃在我的意料之中。我顺水推舟,把这两种计算过程写在黑板上,问这两种计算哪种计算正确?顿时,同学们纷纷争论:有的说第一种解答正确;有的说第二种解答正确。我见学生的情绪高涨,对问题的答案有着非常浓厚的兴趣,于是说:“到底哪种解答方法正确呢?我们学习四则混合运算后,就知道答案了。接着,我板书“四则混合运算”,讲授新课,效果很好。实践证明,有目的地设计一些容易做错的题目,造成“悬念”,有助于提高学习兴趣,培养学生学习的主动性。

四、创“难”

创“难”可在某堂课或某段知识前抛出,使学生看到所学知识最高点,经常保持一种学习的未完成感。如在教学“循环小数”时,出示两组题:①1.6÷0.25,15÷0.06;②10÷6,70.7÷33。学生很快计算出第一组题的得数,但在计算第二组题时,学生发现怎么除也除不完。“怎么办?”“如何写出商呢?”学生求知与教学内容之间形成一种“不协调”。好奇与强烈的求知欲望使学生的注意力集中指向困惑之处。这样以“难”制成“悬念”,使学生在学习循环小数时心中始终有了一个目标,激发了学习的积极主动性。

五、求“变”

求“变”就是在教学中对典型的问题进行有目的、多角度、多层次的演变,使学生逐步理解和掌握此类数学问题的一般规律和本质属性,也使学生对学习的始终感到“新”、“奇”,由此培养学生思维的灵活性。例如:学习百分数应用题后,出示下列变式练习:1、苹果树20棵,梨树24棵,苹果树是梨树的几分之几?2、苹果树20棵,梨树24棵,梨树是苹果树的几倍?3、苹果

延伸阅读:

利用现代教育技术优化语文课堂教学利用现代教育技术优化语文课堂教学 现代教育技术正日益成为教育的先导,它是科学技术物化在教育教学中的体现。 现代教育技术作为现代化的教学手段,必须和传统的教学方法融为一...

聚焦课堂教学读书体会感想一是我认为教学过程中的核心问题是“结论与过程”的关系问题从教学角度讲,所谓教学的结论,就是教学所要达到的目的或所需获得的结果;所谓教学的过程中,就是达到教学目的或者获得...

谈小学数学教学在素质教育中的地位作用及其课堂教学一、小学数学教育在素质教育中的地位和作用 九年义务教育全日制小学数学大纲(试用)指出:“要根据数学学科的特点,对学生进行学用的教育,爱祖国、爱社会主义、爱科学的教育,辩证唯...

提高数学课堂教学效率的一种有效形式所谓“班内分层教学”就是在不打乱原班级的情况下,通过对学生分层、教学内容分层,对不同层次的学生区别施教,进行分层递进教学。具体做法是: 一、对学生分层 对学生恰当分出层次...

提高小学数学课堂教学效率的几点思考提高课堂教学效率同提高课堂教学效果是两个不同的概念,评价教学质量,不仅要看教学效果,还应看教学效率。例如,第一册教学认识0这个知识点,所需时间如果是15分,结果一位教师花15分...

提高小学数学课堂教学效率的基本要求一、教学观念现代化 实践证明:教学观念直接影响课堂教学效率,教学观念不解决,再好的教材,再完善的教学方法,使用起来也会“走样”。传统的教学观认为:教学就是教师教,学生学,教师讲,...

课堂教学的50个细节读后感课堂教学的50个细节读后感 (一) 暑假里,我拜读了《课堂教学的50个细节》后,受益匪浅。教授从课堂教学特征、教学方法探索、教师语言行为、课堂中的非语言行为、学生学习状态、课...

课堂教学应加强对学生数学应用意识的培养一、认清数学知识的实用性 数学知识的应用是广泛的,大至宏观的天体运动,小至微观的质子、中子的研究,都离不开数学知识,甚至某些学科的生命力也取决于对数学知识的应用程度。马...

《微课程设计与翻转课堂教学实践》学习心得体会艾胜华 深圳市华侨城中学侨城部 近日,受学校的委派,我们一行五人,前往苏州参加第五期全国中小学微课程设计与反转课堂教学实践高级研修班。现将如下心得与大家共分享。"翻转课...

推荐阅读
图文推荐
栏目列表