[“微积分”课堂教学的体会]摘 要:在倡导素质教育的今天,提高教学质量是所有高等学校的重要任务之一。本文结合自己在微积分课程中的教学工作实践,从改变教学观念、做好课堂设计以及教学模式方面讨论了提...+阅读
第一章 行列式求法,最简单的了,不说了。
第二章 矩阵,概念弄懂,会求矩阵的秩,会将一个矩阵化成行最简型矩阵(阶梯形矩阵)即可。
第三章 线性方程组,会通过考察矩阵的秩,进而讨论方程组:无解,有唯一解,有无穷多解。这三种情况。其中,若方程有无穷多解,则通解的无关解向量就有n-r个。n为矩阵的阶数,r为矩阵的秩。
第四章 向量,解向量和对应矩阵的关系。讨论向量无关的一些条件,若存在一组不全为0的数k1、k2...kn使得,k1*a1+k2*a2+...+kn*an=0,则称向量组a1、a2...an线性相关。如果k1、k2...kn全为0,则线性无关。
第五章 特征值和特征向量,懂得特征值的求法,了解特征值和矩阵的秩的关系,通过特征值的个数,以及重根数,判断线性方程的无关解的个数,进而求出通解,在书上找到一个经典例题即可,期末考试绝对不难。
第六章 二次型,了解正贯系数和秩的关系,正贯系数的求法,二次型的经典写法,以及二次型与矩阵的秩的关系。正定矩阵简单看看即可,应该不会考,又不是考研,不会考那么多。如果要考正定矩阵的话,记住f(x)>0,其正贯系数均大于0。
延伸阅读:
线性代数学习心得把选择题第8题拉出来让大家看看 n(n>1)阶实对矩阵A是正定矩阵的充份必要条件是() A.A是正定二次型f(x)=x(A)x的矩阵 B.A是各阶顺序主子式均大于等于零(书本的p231定5.9知,大于零就...
高等数学中微积分的学习感悟在大学学好微积分是必要的,也是必须的。学习是一个长期的过程,不要总想考试前几天突击一下就可以,对于我们中的大多数还都是普通人,所以一定要听好每一节课,做好每一次作业。态度...
微积分模块的主要内容有哪些?请谈谈你的学习体会包括极限与连续,一元函数微分学,一元函数积分学,微分方程与差分方程,向量数与空间解析几何,多元函数微积分学和无穷级数。 我这个学期学习了微积分,了解了很多关于微积分的知识,在...
简明微积分发展史读后感从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋...