《 2011 版数学课程标准》在“图形与几何”领域仍然增加了“平移,旋转,放大与缩小这些内容”,只是把“图形与变换”改为“图形的运动”。所谓图形的运动,在义务教育数学课程中最基本的形式有两种:一是形状和大小不变,仅仅位置发生变化(合同运动);二是形状不变而大小变化(相似运动)。1. 从学生角度来看现实生活中存在着大量的图形的变换的现象,学生有丰富的生活经验,例如,电梯、地铁列车在平行移动;钟面指针、自行车轮、电风扇叶片在旋转运动;许多年画、卡通动物、建筑物的形状具有对称性。
这些现象为儿童学习图形的变换提供了丰富多彩的现实背景。我们希望提供给学生一种数学的眼光,去认识和把握这些现象。通过图形的运动探索发现并确认图形的一些性质,有助于学生发展几何直观能力和空间观念,有利于学生提高研究图形性质的兴趣、体会研究图形性质可以有不同的方法。2.从数学发展的角度来看1872 年,德国大数学家克莱茵发表“爱尔兰根纲领”的演说,这个里程碑式的论断,改变了近两千年来人们用静止的观点研究几何的传统方法。
与静态地研究图形与几何的性质不同,图形的变换是从运动变化的角度去探索和认识图形与几何的性质,欣赏与设计图案。是发展学生空间观念和思维能力的重要内容。以运动的观点来探究几何图形变化规律的问题也是近年来中考综合考查的重点,这类问题的显著特点是:图形中的某个元素(如点、线、角等),或整个几何图形按某种规律运动,图形的各个元素在运动变化中相互依存,相互影响,解答这类问题时,在观察几何图形运动变化的过程中要善于探索并发现一些几何性质,相互关系及规律,学生要解答此类问题就必须具有扎实的基础知识和灵活的解题能力,并且往往需要综合运用转化思想、数形结合思想、方程函数思想及分类讨论等各种数学思想。
在解题过程中要善于借助动态思维的观点来分析,不被“动”所迷惑,从特殊情形入手,变中求不变,动中求静,抓住静的瞬间,以静制动,把动态的问题转化为静态的问题来解决,从而找到“动”与“静”的联系,揭示问题的本质,发现运动中的各个变量之间互相依存的函数关系,从而找到解决问题的突破口,也就找到了解决这类问题的途径。
这样看来,在平时的教学活动中应重视图形运动的教学,注重由浅入深、循序渐进、因材施教、面向全体学生,设置多媒体课件,启发学生寻找解题思路,自觉使用数学思想方法,“以动求静”、数形结合、函数思想、图形的运动是新课程的热点,也是学生发展的重点,让我们在图形运动变化的过程中体验、把握、认知数学知识,应用数学、创新数学。