一、图示法 图示法是一种很直观的检验方法,它是通过对残差散点图的分析来判断随机误差项的序列相关性。把给定的回归模型直接用普通最小二乘法估计参数,求出残差项,并把作为随机误差项的估计值,画出的散点图。由于把残差项作为随机误差项的估计值,随机误差项的性质也应能在残差中反映出来。 (一)按时间顺序绘制残差图 如果残差,,随着时间的变化而呈现有规律的变动,则存在相关性,进而可以推断随机误差项之间存在序列相关性。如果随着时间的变化,并不频繁地改变符号,而是取几个正值后又连续地取几个负值(或者,与之相反,几个连续的负值后面紧跟着几个正值),则表明随机误差项存在正的序列相关,(见图6-1);如果随着时间的变化,不断地改变符号(见图6-2),那么随机误差项之间存在负的序列相关。 图6-2 负序列相关 (二)绘制,的散点图 计算和,以为纵轴,为横轴,绘制(,),的散点图。如果大部分点落在第Ⅰ,Ⅲ象限,表明随机误差项存在正的序列相关(见图6-3);如果大部分点落在第Ⅱ,Ⅳ象限,表明随机误差项存在负的序列相关(见图6-4)。 图6-3 正序列相关 图6-4 负序列相关二、杜宾——瓦特森(D-W)检验 1、适用条件杜宾——瓦特森检验,简称D—W检验,是J.Durbin(杜宾)和G.S.Watson(瓦特森)于1951年提出的一种适用于小样本的检验序列相关性的方法。D-W检验是目前检验序列相关性最为常用的方法,但它只适用于检验随机误差项具有一阶自回归形式的序列相关问题。在使用该方法时前,必须注意该方法的适用条件。回归模型含有截距项,即截距项不为零;解释变量是非随机的;随机误差项为一阶自相关,即;回归模型中不应含有滞后内生变量作为解释变量,即不应出现下列形式: 其中,为的滞后一期变量;无缺失数据。当上述条件得到满足时,我们可以利用D-W方法检验序列相关问题。2、具体过程(1)提出假设,即不存在序列相关,,即存在序列相关性(2)定义D-W检验统计量为了检验上述假设,构造D-W检验统计量首先要求出回归估计式的残差,定义D-W统计量为: (6-11)其中,。由(6-11)式有 (6-12)由于与只有一次观测之差,故可认为近似相等,则由(6-12)式得 (6-13)随机误差序列的自相关系数定义为: (6-14)在实际应用中,随机误差序列的真实值是未知的,需要用估计值代替,得到自相关系数的估计值为: (6-15)在认为与近似相等的假定下,则(6-15)式可化简为: (6-16)所以,(6-13)式可以写成 (6-17)(3)检验序列相关性因为自相关系数的值介于-1和1之间,所以:,而且有值与的对应关系如表6-1所示。表6-1 值与的对应关系表值DW值随机误差项的序列相关性-1(-1,0) 0(0,1)1 4(2,4) 2(0,2)0 完全负序列相关 负序列相关 无序列相关 正序列相关 完全正序列相关从表6-1中,我们可以知道当值显著地接近于0或者4时,则存在序列相关性;而接近于2时,则不存在序列相关性。这样只要知道统计量的概率分布,在给定的显著性水平下,根据临界值的位置就可以对原假设进行检验。但是统计量的概率分布很难确定,作为一种变通的处理方法,杜宾和瓦特森在5%和1%的显著水平下,找到了上限临界值和下限临界值,并编制了D-W检验的上、下限表。这两个上下限只与样本的大小和解释变量的个数有关,而与解释变量的取值无关。具体的判别规则为:(1) ,拒绝,表明随机误差项之间存在正的序列相关;(2) ,拒绝,表明随机误差项之间存在正的序列相关;(3) ,接受,即认为随机误差项之间不存在序列相关性;(4) 或,不能判定是否存在序列相关性。上述四条判别规则可用图6-5表示: 3.D-W检验特点D-W检验法的优点在于其计算简单、应用方便,目前已成为最常用的序列相关性检验的方法。EViews软件在输出回归分析结果中直接给出了DW值,并且人们也习惯将DW值作为常规的检验统计量,连同值等一起在报告回归分析的计算结果时表明。但D-W检验也存在很大的局限性,在应用时应予以重视。D-W检验不适应随机误差项具有高阶序列相关的检验; D-W检验有两个无法判别的区域,一旦DW值落入这两个区域,必须调整样本容量或采取其他的检验方法;这一方法不适用于对联立方程模型中各单一方程随机误差项序列相关性的检验;D-W检验不适用于模型中含有滞后的被解释变量的情况。 二、回归检验法 1、定义回归检验法适用于任一随机变量序列相关性的检验,并能提供序列相关的具体形式及相关系数的估计值。2、应用步骤分三步进行:第一步,依据模型变量的样本观测数据,应用普通最小二乘法求出模型的样本估计式,并计算出随机误差项的估计值;第二步,建立与、的相互关系模型,由于它们相互关系的形式和类型是未知的,需要用多种函数形式进行试验,常用的函数形式主要有: 第三步,对于不同形式的与、的相互关系模型,用普通最小二乘法进行参数估计,得出回归估计式,再对估计式进行统计检验。如果检验的结果是每一种估计式都不显著的,就表明与、是不相关的,随机误差项之间不存在序列相关性。如果通过检验发现某一个估...