范文无忧网学习方法学习技巧

中学数学二次函数解题技巧

03月24日 编辑 fanwen51.com

[高中立体几何解题技巧]高中立体几何解题技巧,各位同学知道怎么简单的解答立体几何的题目吗?看看下面吧! 高考立体几何解题技巧 1平行、垂直位置关系的论证的策略: (1)由已知想性质,由求证想判定,即分...+阅读

数学二次函数解题技巧,各位同学知道怎么简单的节函数吗?看看下面吧!大家不需要看到函数就怕怕,其实有技巧的哦!

初中数学函数解题技巧

1、注重类比思想

不同的事物往往具有一些相同或相似的属性,人们正是利用相似事物具有的这种属性,通过对一事物的认识来认识与它相似的另一事物,这种认识事物的思维方法就是类比法。

初中学习的正比例函数、一次函数、反比例函数、二次函数在概念的得来、图象性质的研究、及基本解题方法上都有着本质上的相似。

因此阳光学习网刘老师指出,采用类比的方法不但省时、省力,还有助于学生的理解和应用。

是一种既经济又实效的教学方法。

2、注重数形结合思想

数形结合的思想方法是初中数学中一种重要的思想方法。

数学是研究现实世界数量关系和空间形式的科学。

而数形结合就是通过数与形之间的对应和转化来解决数学问题。

它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

函数的三种表示方法:解析法、列表法、图象法本身就体现着函数的数形结合。

函数图象就是将变化抽象的函数拍照下来研究的有效工具,函数教学离不开函数图象的研究。

3、注重自变量的取值范围

自变量的取值范围,是解函数问题的难点和考点。

正确求出自变量取值范围,正确理解问题,并化归为解不等式或不等式组。

这需要学生掌握函数的思想,不等式的实际应用,全面考虑取值的实际意义。

4、注重实际应用问题

学习函数的主要目的之一就是在复杂的实际生活中建立有效的函数模型,利用函数的知识解决问题。

这也是新课标所倡导的学习,因此新教材大力倡导函数与实际的应用。

初中掌握数学解题方法和技巧很重要,在德智教育网一线名师将在线对我们进行一对一辅导数学函数,让同学们能够掌握函数的基本知识点,效地形成类比和数形结合等数学思想,从而形成自己的在数学函数方面的解题方法和技巧。

初中数学二次函数做题技巧

I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系:

y=ax^2+bx+c(a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式 一般式:y=ax^2;+bx+c(a,b,c为常数,a0)顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)] 交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] 注:在3种形式的互相转化中,有如下关系: h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-bb^2;-4ac)/2a

III.二次函数的图像 在平面直角坐标系中作出二次函数y=x的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。

对称轴为直线 x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为 P [ -b/2a ,(4ac-b^2;)/4a ]。

当-b/2a=0时,P在y轴上;当= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a0时,抛物线向上开口;当a0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数 = b^2-4ac0时,抛物线与x轴有2个交点。

= b^2-4ac=0时,抛物线与x轴有1个交点。

= b^2-4ac0时,抛物线与x轴没有交点。

V.二次函数与一元二次方程 特别地,二次函数(以下称函数)y=ax^2;+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程), 即ax^2;+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

画抛物线y=ax2时,应先列表,再描点,最后连线。

列表选取自变量x值时常以0为中心,选取便于计算、描点的整数值,描点连线时一定要用光滑曲线连接,并注意变化趋势。

二次函数解析式的几种形式

(1)一般式:y=ax2+bx+c (a,b,c为常数,a0).

(2)顶点式:y=a(x-h)2+k(a,h,k为常数,a0).

(3)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a0.

说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点如果图像经过原点,并且对称轴是y轴,则设y=ax^

2;如果对称轴是y轴,但不过原点,则设y=ax^2+k 定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c (a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。

IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

x是自变量,y是x的函数

二次函数的三种表达式

①一般式:y=ax^2+bx+c(a,b,c为常数,a0)

②顶点式[抛物线的顶点 P(h,k) ]:y=a(x-h)^2+k

③交点式[仅限于与x轴有交点 A(x1,0) 和 B(x2,0) 的抛物线]:y=a(x-x1)(x-x2)

以上3种形式可进行如下转化:

①一般式和顶点式的关系对于二次函数y=ax^2+bx+c,其顶点坐标为(-b/2a,(4ac-b^2)/4a),即 h=-b/2a=(x1+x2)/2 k=(4ac-b^2)/4a

②一般式和交点式的关系 x1,x2=[-b(b^2-4ac)]/2a(即一元二次方程求根公式)

初三数学二次函数的解题方法

图形变换包含平移、轴对称、旋转、位似四种变换,那么二次函数的图像在其图形变化(平移、轴对称、旋转)的过程中,如何完成解析式的确定呢?解决此类问题的方法很多,关键在于解决问题的着眼点。

笔者认为最好的方法是用顶点式的方法。

因此解题时,先将二次函数解析式化为顶点式,确定其顶点坐标,再根据具体图形变换的特点,确定变化后新的顶点坐标及a值。

1、平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。

顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。

例1.将二次函数y=x2-2x-3的图像向上平移2个单位,再向右平移1个单位,得到的新的图像解析式为_____

分析:将y=x2-2x-3化为顶点式y=(x-1)2-4,a值为1,顶点坐标为(1,-4),将其图像向上平移2个单位,再向右平移1个单位,那么顶点也会相应移动,其坐标为(2,-2),由于平移不改变二次函数的图像的形状和开口方向,因此a值不变,故平移后的解析式为y=(x-2)2-2。

2、轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。

二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。

顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。

二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。

但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。

例2.求抛物线y=x2-2x-3关于x轴以及y轴对称的抛物线的解析式。

分析:y=x2-2x-3=(x-1)2-4,a值为1,其顶点坐标为(1,-4),若关于x轴对称,a值为-1,新的顶点坐标为(1,4),故解析式为y=-(x-1)2+4;若关于y轴对称,a值仍为1,新的顶点坐标为(-1,-4),因此解析式为y=(x+1)2-4。

3、旋转:主要是指以二次函数图像的顶点为旋转中心,旋转角为180的图像变换,此类旋转,不会改变二次函数的图像形状,开口方向相反,因此a值会为原来的相反数,但顶点坐标不变,故很容易求其解析式。

例3.将抛物线y=x2-2x+3绕其顶点旋转180,则所得的抛物线的函数解析式为________

分析:y=x2-2x+3=(x-1)2+2中,a值为1,顶点坐标为(1,2),抛物线绕其顶点旋转180后,a值为-1,顶点坐标不变,故解析式为y=-(x-1)2+2。

中学数学二次函数解题技巧

延伸阅读:

初三圆的解题技巧初三圆的解题技巧,考试需要技巧,各位同学知道怎么简单的解答数学中的圆难题吗?看看下面的技巧吧! 初中数学圆解题技巧 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心...

物理电路解题的基本方法1、解题的基本方法、步骤本章的主要问题是研究电路中通以稳恒电流时,各电学量的计算,分析稳恒电流的题目,步骤如下: (1)确定所研究的电路。 (2)将不规范的串并联电路改画为规范...

高中数学选择题的解题技巧高中数学选择题的解题技巧,答题技巧是一门技巧,我们下面就来说说高中数学选择题的解题技巧哦! 答题技巧是一门学问,心理准备、答题顺序、审题方式、遇到难题时的处理等,都大有讲...

数学规律题解题技巧初中数学规律题解题技巧,各位初中的同学知道怎么做规律题吗?其实是有技巧的哦,看看下面吧! 一、基本方法看增幅 (一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比...

初中函数解题技巧初中函数解题技巧,函数很难,但是还有有技巧的哦?下面我们就来看看初中函数解题技巧哦! 初中数学函数解题技巧 1、注重类比思想 不同的事物往往具有一些相同或相似的属性,人们正...

初中数学考试解题技巧初中数学考试解题技巧,考试需要技巧,各位同学知道怎么简单的解答数学中的难题吗?看看下面的技巧吧!初中数学解题方法与技巧 一、数学思想方法在解题中有不可忽视的作用解题的...

高中数学解题的技巧数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,G . 波利亚提出了四个阶段...

初中政治有什么解题技巧初中政治有什么解题技巧,让学生掌握相应的答题技巧是提高学生学习能力的重要方式,下面就为大家推荐初中政治有解题技巧。初中政治答题技巧【1】 一、选择题:选择题的解题方法有...

议论文阅读解题相关技巧议论文阅读解题相关技巧,解题有技巧可以帮助你拿分哦,下面我们就来看看议论文阅读解题时候的做题技巧吧! 议论文阅读答题技巧 1、论点(证明什么) 论点应该是作者看法的完整表...

推荐阅读
图文推荐
栏目列表