[高中数学选择题的解题技巧]高中数学选择题的解题技巧,答题技巧是一门技巧,我们下面就来说说高中数学选择题的解题技巧哦! 答题技巧是一门学问,心理准备、答题顺序、审题方式、遇到难题时的处理等,都大有讲...+阅读
高中数学解题有哪些技巧如极限法
一、分析条件和结论的联系
解完题后,要思考题目涉及了哪些知识点,各已知条件之间是怎样深化和联系的,有哪些条件的应用方式是以前题目中没有出现过的,条件和结论是怎样联系的,求得的结果与题意或实际生活是否相符。通过这样的思考可使我们清楚题目的背景,促使我们进行大胆探索,进而发现规律,激发创造性思维。
二、体会数学方法和思想
解题后,要注意思考所解题目运用的是那一种数学方法,渗透了什么数学思想,以达到举一反三、触类旁通的目的。常用的数学方法主要有:(1) 配方法 (2) 换元法 (3) 待定系数法 (4 ) 定义法 (5 ) 数学归纳法( 6 ) 参数法( 7) 反证法 (8)构造法 ( 9) 分析与综合法 (10) 特例法 (11 ) 类比与归纳法 。 高中数学常用的数学思想有:(1)数形结合思想(2 )分类讨论思想(3 ) 函数与方程思(4 ) 转化与化归的思想。 经常进行这样的思考和分析,有利于对知识的深刻理解和运用,提高知识的迁移能力。
三、一题多解与多题一解
在解题时不要仅满足与解决了题目,还要考虑有无其他解法。经常尝试多种解法,可以锻炼我们思维的发散性,培养我们综合运用所学知识解决问题的能力和不断创新的意识。思考解决这道题目的方法还可以解决那些题目。这些题目背景可能千差万别,但解决时所用的数学方法是一样的。这样的思考能帮助我们看清题目的本质,大大提高解题能力。
四、题目的变化与拓展
解完一道题目,还可以对它进行适当的变化和拓展。主要可以改变题目条件,包括条件的加强与条件的减弱,条件与结论的交换等。改变题目的结论,主要是结论的深化和延伸。一题多变,有利于开阔眼界,拓宽解题思路,提高应变能力,有效地预防思维定势的负面影响。
五、错误的总结与记录
高中数学题型与解题技巧
常见高中数学几类题型解题技巧 选择题 对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。 做选择题有四种基本方法: 1 回忆法。直接从记忆中取要选择的内容。 2 直接解答法。多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。 3 淘汰法。把选项中错误中答案排除,余下的便是正确答案。 4 猜测法。计算证明题 解答这种题目时,审题显得极其重要。只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。在做这种题时,有一些共同问题需要注意: 1 注意完成题目的全部要求,不要遗漏了应该解答的内容。 2 在平时练习中要养成规范答题的习惯。 3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。
4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。 5 保证计算的准确性,注意物理单位的变换。应用性问题的审题和解题技巧 新教学大纲指出:要增强用数学的意识,一方面通过背景材料,进行观察、比较、分析、综合、抽象和推理,得出数学概念和规律,另一方面更重要的是能够运用已有的知识将实际问题抽象为数学问题,建立数学模型。近几年的数学高考加大了应用性试题的考查力度,数量上稳定为两小一大;质量上更加贴近生产和生活实际,体现科学技术的发展,更加 贴近中学数学教学的实际。解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。
函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。 最值和定值问题的审题和解题技巧 最值和定值问题 最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大?小 值以及取得最大?小 值的条件;定值着眼于变量在变化过程中的某个不变量。近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大?小 值作为设问的方式。分析和解决最值问题和定值问题的思路和方法也是多种多样的。命制最值问题和定值问题能较好体现数学高考试题的命题原则。应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。
参数兼有常数和变数的双重特征,是数学中的“活泼”元素,曲线的参数方程,含参数的曲线方程,含参变系数的函数式、方程、不等式等,都与参数有关。函数图象与几何图形的各种变换也与参数有关,有的探究性问题也与参数有关。参数具有很强的“亲和力”,能广泛选用知识载体,能有效考查数形结合、分类讨论、运动变换等数学思想方法。应对参数问题要把握好两个环节,一是搞清楚参数的意义?几何意义、物理意义、实际意义等 ,特别是具有几何意义的参数,一定要运用数形结合的思想方法处理好图形的几何特征与相应的数量关系的相互联系及相互转换。二是要重视参数的取值的讨论,或是用待定系数法确定参数的值,或是用不等式的变换确定参数的取值范围。
代数证明题的审题和解题技巧代数证明题 近几年的数学高考注意控制立体几何试题的难度,推理论证能力的考查重点转移到代数与解析几何?特别是代数证明题。函数的性质及相关函数的证明题;数列的性质及相关数列的证明题;不等式的证明题,尤其是与函数或数列相综合的不等式的证明题等,都频频出现在近几年的数学高考试题之中。应对代数证明题,一是要全面审视各相关因素的关系,注意题目的整体结构;二是要完整、准确表述推理论证的过程,对于具有几何意义的代数证明题,要妥善处理几何直观、数式变换及推理论证的关系,注意防止简单运用“如图可知”替代推理论证。 探究性题的审题和解题技巧 探究性问题 近几年的数学高考贯彻了“多考一点想,少考一点算”的命题意图,加大试题的思维量,控制试题的运算量,突出对数学的“核心能力”——思维能力的考查。
有些试题设计了新颖的情景,有些试题设计了灵活的设问方式,有些试题设计了新的题型结构?如存在性问题;发现结论且证明结论的问题;寻求并证明充分条件或必要条件的问题等 ,这样的试题有助于克服死记硬背和机械照搬,优化考查功能。应对探究性问题要审慎处理“阅读理解”和“整体设计”两个环节,首先要把题目读懂,全面、准确把握题目提供的所有信息和题目提出的所有要求,在此基础上分析题目的整体结构,找好解题的切入点,对解题的主要过程有一个初步的设计,再落笔解题。在思维受阻时,及时调整解题方案。切忌一知半解就动手解题。
高中数学试题答题技巧非高考
1.时间分配.三部分,选择,填空,解答题,大体时间是半小时选择,十五分钟填空,其余解答题,
2,弃题策略.你考试时能不能答完卷,考试时间够不够?如果不够怎么办?选择题如果一道题超过了三分多钟还不知怎么做,放弃,先选个答案放着,如果时间充裕,回过头来再做.解答题,计算太繁琐,分值不高的,放弃留着宝贵的时间做性价比高的.
3.审题要细,计算要准确,逻辑要清楚.平时就要养成良好的解题习惯,到了考试才不会忙中出错.平时计算准确率如何,难道只是考试时才算错吗?很多人平时就总算错,只不过对完答案改过来了,考试时没人对答案,这个问题就显现出来了.
4.平时做题就要限时限量当考试来练习,考试时用平常心来对待.
考试经验要靠自己不断摸索总结,考试前想好遇到各种问题如何面对,考试时就不会慌张.
延伸阅读:
高中数学解题的技巧数学解题的思维过程 数学解题的思维过程是指从理解问题开始,经过探索思路,转换问题直至解决问题,进行回顾的全过程的思维活动。 对于数学解题思维过程,G . 波利亚提出了四个阶段...
高中英语语法填空解题技巧都有哪些【摘要】高中英语是教育教学的重要课程,在高考中占据着非常重要的比重,是大分值科目之一。然而与汉语语言特点不同,英语具有自身的特殊性,对学生的记忆力、思维能力都有很高的要...
高中数学题型与解题技巧常见高中数学几类题型解题技巧 选择题 对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。 做选择题有四种基本方法: 1 回忆法。直接从记...
高中数学的数列的解题方法技巧由于无法编辑公式,具体方法,看下图: 知识点三:数列应用问题 1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长...
高中数学数列答题技巧有哪些(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。 (2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。 (3)数...
高中数学考试有哪些技巧本人高考数学136,现就读于北师大数学系 要说技巧, 首先是有所取舍,有些明显超出实力范围的果断放弃,没必要耽误这个时间。95%以上的人对最后一题最后一问都是束手无策的。省出时...
高考数学大题的解题技巧都有哪些一、三角函数题 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误。一着不慎,满盘皆输。)。...
高中英语阅读理解解题技巧和方法有哪些解释如下:高中英语阅读理解解题技巧:要想提高高中英语阅读理解,建议采用以下三种方法: 1、抓主题,正确分析文章的中心思想要抓住文章的中心思想,就要找它的主题句,一般文章的主题句...
考研数学三客观题的解题技巧有哪些呢我看很多同学会看毛纲源2017《考研数学客观题简化求解数学三》毛纲源2017《考研数学常考题型解题方法技巧归纳数学三》这两本书都有很强的答题技巧性,对考研常考的题型和答题...