范文无忧网范文学习范文大全

什么是人工神经网络

04月03日 编辑 fanwen51.com

[人工神经网络的例子两三个就可以了。。]基于MATLAB的神经网络编程(1)编程理论作为比较成熟的算法,软件Matlab中有神经网络工具箱,所以可以借助Matlab神经网络工具箱的强大功能,在此基础上进行二次开发,从繁琐的编程工作...+阅读

什么是人工神经网络

工神经网络是一种应用类似於大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为「神经网络」或类神经网路。神经网络是一种运算模型[1],由大量的节点(或称「神经元」,或「单元」)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对於通过该连接信号的加权值,称之为权重(weight),这相当於人工神经网路的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。它的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基於数学统计学类型的学习方法(Learning Method)得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。

简单说明人工神经网络和模糊神经网络

其实百科说明的很详细,如“人工神经网络是模拟人脑结构的思维功能,具有较强的自学习和联想功能,人工干预少,精度较高,对专家知识的利用也较少。但缺点是它不能处理和描述模糊信息,不能很好利用已有的经验知识,特别是学习及问题的求解具有黑箱特性,其工作不具有可解释性,同时它对样本的要求较高;模糊系统相对于神经网络而言,具有推理过程容易理解、专家知识利用较好、对样本的要求较低等优点,但它同时又存在人工干预多、推理速度慢、精度较低等缺点,很难实现自适应学习的功能,而且如何自动生成和调整隶属度函数和模糊规则,也是一个棘手的问题。”

即保证人工神经网络自身的学习能力下,采用模糊理论解决模糊信号,使神经网络权系数为模糊权,或者输入为模糊量。

比如原本神经网络处理的是连续数据(double)不适合求解模糊数据,此时就需要引入模糊理论,来构造适合于求解这类模糊数据的神经网络。

简述人工神经网络的结构形式

神经网络有多种分类方式,例如,按网络性能可分为连续型与离散型网络,确定型与随机型网络:按网络拓扑结构可分为前向神经网络与反馈神经网络。本章土要简介前向神经网络、反馈神经网络和自组织特征映射神经网络。

前向神经网络是数据挖掘中广为应用的一种网络,其原理或算法也是很多神经网络模型的基础。径向基函数神经网络就是一种前向型神经网络。

Hopfield神经网络是反馈网络的代表。Hvpfi}ld网络的原型是一个非线性动力学系统,目前,已经在联想记忆和优化计算中得到成功应用。

模拟退火算法是为解决优化计算中局部极小问题提出的。Baltzmann机是具有随机输出值单元的随机神经网络,串行的Baltzmann机可以看作是对二次组合优化问题的模拟退火算法的具体实现,同时它还可以模拟外界的概率分布,实现概率意义上的联想记忆。

自组织竞争型神经网络的特点是能识别环境的特征并自动聚类。自组织竟争型神经网络已成功应用于特征抽取和大规模数据处理。

什么是人工神经网络及其算法实现方式

人工神经网络(Artificial Neural Network,即ANN ),是20世纪80 年代以来人工智能领域兴起的研究热点。它从信息处理角度对人脑神经元网络进行抽象, 建立某种简单模型,按不同的连接方式组成不同的网络。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。最近十多年来,人工神经网络的研究工作不断深入,已经取得了很大的进展,其在模式识别、智能机器人、自动控制、预测估计、生物、医学、经济等领域已成功地解决了许多现代计算机难以解决的实际问题,表现出了良好的智能特性。

...

延伸阅读:

人工神经网络在环境中有哪些应用模式识别是对表征事物或现象的各种形式的信息进行处理和分析,来对事物或现象进行描述、辨认、分类和解释的过程。该技术以贝叶斯概率论和申农的信息论为理论基础,对信息的处理...

人工神经网络的主要研究成果基于人工神经网络的土坝病害诊断知识获取方法 摘要:以土坝测压管水位异常诊断为实例,对反向传播(bp)神经网络进行训练,然后通过典型示例经网络计算生成显式的诊断规则,为专家系统...

人工神经网络的应用分析经过几十年的发展,神经网络理论在模式识别、自动控制、信号处理、辅助决策、人工智能等众多研究领域取得了广泛的成功。下面介绍神经网络在一些领域中的应用现状。 在处理许...

国内外人工神经网络的研究现状基于人工神经网络的土坝病害诊断知识获取方法 摘要:以土坝测压管水位异常诊断为实例,对反向传播(BP)神经网络进行训练,然后通过典型示例经网络计算生成显式的诊断规则,为专家系统...

人工智能是什么希望对你有帮助 望采纳 人工智能, 英文单词 artilect ,来源于 雨果·德·加里斯 的著作. “人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众...

什么是人工智能什么是人工智能,什么叫人工智能:人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科...

什么是人工智慧什么是人工智慧,什么事人工智能如何定义人工智能:人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制...

跪求关于人工神经网络的文章跪求关于人工神经网络的文章,Deep Neural Networks are Easily Fooled:这篇英文论文的翻译谁有:B. Network Pruning Network pruning offers another approach for dynamically...

什么是人工神经网络评估什么是人工神经网络评估,数学模型中存在小数时遗传算法该怎么做:利用神经网络,对某个问题进行分类评估。该问题可能具有若干参数,可作为神经网络的输入向量,通过一组样本的训练,将...

推荐阅读
图文推荐
栏目列表