范文无忧网范文学习范文大全

七桥问题答案怎么画

05月05日 编辑 fanwen51.com

[七桥定理指什么]七桥问题Seven Bridges Problem 18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中任一...+阅读

七桥问题答案怎么画

答案是无解的,你要记住,七桥问题即:能否笔不离纸,不重复地一笔画完整个图形。“一笔画”问题,数学分析:一笔画有起点和终点,起点和终点重合的图形称为封闭图形,否则便称为开放图形。除起点和终点外,一笔画中间可能出现一些曲线的交点。只有当笔沿着一条弧线到达交点后,又能沿着另一条弧线离开,也就是交汇于这些点的弧线成双成对时,一笔画才能完成,这样的交点就称为“偶点”。如果交汇于这些点的弧线不是成双成对,也就是有奇数条,则一笔画就不能实现,这样的点又叫做“奇点”结论:若是一个一笔画图形,要么只有两个奇点,也就是仅有起点和终点,这样一笔画成的图形是开放的;要么没有奇点,也就是终点和起点连接起来,这样一笔画成的图形是封闭的。

由于七桥问题有四个奇点,所以要找到一条经过七座桥,但每座桥只走一次的路线是不可能的。

七桥答案图怎么画

18世纪,东普鲁士的首府哥尼斯堡是一座景色迷人的城市,普莱格尔河横贯城区,使这 座城市锦上添花,显得更加风光旖旋。这条河有两条支流,在城中心汇成大河,在河的 中央有一座美丽的小岛。河上有七座各具特色的桥把岛和河岸连接起来。 每到傍晚,许多人都来此散步。人们漫步于这七座桥之间,久而久之,就形成了这样一 个问题:能不能既不重复又不遗漏地一次相继走遍这七座桥?这就是闻名遐迩的“哥尼 斯堡七桥问题。”每一个到此游玩或散心的人都想试一试,可是,对于这一看似简单的 问题,没有一个人能符合要求地从七座桥上走一遍。这个问题后来竟变得神乎其神,说 是有一支队伍,奉命要炸毁这七座桥,并且命令要他们按照七桥问题的要求去炸。 七桥问题也困扰着哥尼斯堡大学的学生们,在屡遭失败之后,他们给当时著名数学家欧 拉写了一封信,请他帮助解决这个问题。

欧拉看完信后,对这个问题也产生了浓厚的兴趣。他想,既然岛和半岛是桥梁的连接地 点,两岸陆地也是桥梁的连接地点,那就不妨把这四处地方缩小成四个点,并且把这七 座桥表示成七条线。这样,原来的七桥问题就抽象概括成了如下的关系图: 这显然并没有改变问题的本质特征。于是,七桥问题也就变成了一个一笔画的问题,即 :能否笔不离纸,不重复地一笔画完整个图形。这竟然与孩子们的一笔画游戏联系起来 了。接着,欧拉就对“一笔画”问题进行了数学分析一笔画有起点和终点,起点和终点 重合的图形称为封闭图形,否则便称为开放图形。除起点和终点外,一笔画中间可能出 现一些曲线的交点。欧拉注意到,只有当笔沿着一条弧线到达交点后,又能沿着另一条 弧线离开,也就是交汇于这些点的弧线成双成对时,一笔画才能完成,这样的交点就称 为“偶点”。

如果交汇于这些点的弧线不是成双成对,也就是有奇数条,则一笔画就不 能实现,这样的点又叫做“奇点”。见下图: 欧拉通过分析,得到了下面的结论:若是一个一笔画图形,要么只有两个奇点,也就是 仅有起点和终点,这样一笔画成的图形是开放的;要么没有奇点,也就是终点和起点连 接起来,这样一笔画成的图形是封闭的。由于七桥问题有四个奇点,所以要找到一条经 过七座桥,但每座桥只走一次的路线是不可能的。 有名的“哥尼斯堡七桥问题”就这样被欧拉解决了。 在这里,我们可以看到欧拉解决这个问题的关键就是把“七桥问题”变成了一个“一笔 画”问题,那么,欧拉又是怎样完成这一转变的呢? 他把岛、半岛和陆地的具体属性舍去,而仅仅留下与问题有关的东西,这就是四个几何 上的“点”;他再把桥的具体属性排除,仅留下一条几何上的“线”,然后,把“点” 与“线”结合起来,这样就实现了从客观事物到图形的转变。

我们把得到“点”和“线 ”的思维方法叫做抽象,把由“点”和“线”结合成图形的思维方法叫做概括。所谓抽 象就是从客观事物中排除非本质属性,透过现象抽出本质属性的思维方法。概括就是将 个别事物的本质属性结合起来的思维方法。 Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,在河上建有七座桥如图所示: 这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示,便得如下的图后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。

所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务是不可能实现的。

小学六年级数学下册七桥问题如何一笔画问题

这个问题看似简单,然而许多人作过尝试始终没有能找到答案。因此,一群大学生就写信给当时年仅20岁的大数学家欧拉,请他分析一下。欧拉从千百人次的失败中,以深邃的洞察力猜想,也许根本不可能不重复地一次走遍这七座桥。为了证明这种猜想是正确的,欧拉用简单的几何图形来表示陆地和桥。他是这样解决问题的:既然陆地是桥梁的连接地点,不妨把图中被河隔开的陆地看成A、B、C、D 4个点,7座桥表示成7条连接这4个点的线,如图“七桥连线”所示。 七桥连线简化图 再把它简化成图形,就成了右图“七桥连线简化图”。 在说欧拉的推论前,我们先说说偶点和奇点的问题。 奇偶数点图 什么是偶点呢?一个点如果有偶数条边,它就是偶点。如下面“奇偶数点图”的A、B、E、F点。

反之,如果一个点有奇条边数,它就是奇点。如图中的C、D这两点。 偶点和奇点与能不能一次通过这座桥有关系吗?别急,我们慢慢来说。 欧拉认为,如果一个图能一笔画成,那么一定有一个起点开始画,也有一个终点。图上其它的点是“过路点”——画的时候要经过它。 “过路点”有什么特点呢?它应该是“有进有出”的点,有一条边进这点,那么就要有一条边出这点,不可能是有进无出或有出无进。如果只进无出,它就是终点;如果有出无进,它就是起点。因此,在“过路点”进出的边总数应该是偶数,即“过路点”是偶点。 如果起点和终点是同一点,那么它也是属于“有进有出”的点,因此必须是偶点,这样图上全体点都是偶点。 如果起点和终点不是同一点,那么它们必须是奇点,因此这个图最多只能有二个奇点。

把上面所说的归纳起来,说简单点就是: 能一笔画的图形只有两类:一类是所有的点都是偶点。另一类是只有二个奇点的图形。 现在对照七桥问题的图,我们回过头来看看图3,A、B、C、D四点都连着三条边,是奇数边,并且共有四个,所以这个图肯定不能一笔画成。 欧拉对“七桥问题”的研究是图论研究的开始,同时也为拓扑学的研究提供了一个初等的例子。 事实上,中国民间很早就流传着这种一笔画的游戏,从长期实践的经验,人们知道如果图的点全部是偶点,可以任意选择一个点做起点,一笔画成。如果是有二个奇点的图形,那么就选一个奇点做起点以顺利的一笔画完。要是不信的话,你可以试试上图“奇偶数点图”,选择C、D两个奇点来画,肯定能一笔画成。只是很可惜,长期以来,人们只把它作为一类有趣的游戏,没有对它引起重视,也没有数学家对它进行经验总结和研究,这不能不说是一种遗憾。

七桥问题是个什么样的一笔画

18世纪,东普鲁士的首府哥尼斯堡是一座景色迷人的城市,普莱格尔河横贯城区,使这 座城市锦上添花,显得更加风光旖旋。这条河有两条支流,在城中心汇成大河,在河的 中央有一座美丽的小岛。河上有七座各具特色的桥把岛和河岸连接起来。 每到傍晚,许多人都来此散步。人们漫步于这七座桥之间,久而久之,就形成了这样一 个问题:能不能既不重复又不遗漏地一次相继走遍这七座桥?这就是闻名遐迩的“哥尼 斯堡七桥问题。”每一个到此游玩或散心的人都想试一试,可是,对于这一看似简单的 问题,没有一个人能符合要求地从七座桥上走一遍。这个问题后来竟变得神乎其神,说 是有一支队伍,奉命要炸毁这七座桥,并且命令要他们按照七桥问题的要求去炸。 七桥问题也困扰着哥尼斯堡大学的学生们,在屡遭失败之后,他们给当时著名数学家欧 拉写了一封信,请他帮助解决这个问题。

欧拉看完信后,对这个问题也产生了浓厚的兴趣。他想,既然岛和半岛是桥梁的连接地 点,两岸陆地也是桥梁的连接地点,那就不妨把这四处地方缩小成四个点,并且把这七 座桥表示成七条线。这样,原来的七桥问题就抽象概括成了如下的关系图: 这显然并没有改变问题的本质特征。于是,七桥问题也就变成了一个一笔画的问题,即 :能否笔不离纸,不重复地一笔画完整个图形。这竟然与孩子们的一笔画游戏联系起来 了。接着,欧拉就对“一笔画”问题进行了数学分析一笔画有起点和终点,起点和终点 重合的图形称为封闭图形,否则便称为开放图形。除起点和终点外,一笔画中间可能出 现一些曲线的交点。欧拉注意到,只有当笔沿着一条弧线到达交点后,又能沿着另一条 弧线离开,也就是交汇于这些点的弧线成双成对时,一笔画才能完成,这样的交点就称 为“偶点”。

如果交汇于这些点的弧线不是成双成对,也就是有奇数条,则一笔画就不 能实现,这样的点又叫做“奇点”。见下图: 欧拉通过分析,得到了下面的结论:若是一个一笔画图形,要么只有两个奇点,也就是 仅有起点和终点,这样一笔画成的图形是开放的;要么没有奇点,也就是终点和起点连 接起来,这样一笔画成的图形是封闭的。由于七桥问题有四个奇点,所以要找到一条经 过七座桥,但每座桥只走一次的路线是不可能的。 有名的“哥尼斯堡七桥问题”就这样被欧拉解决了。 在这里,我们可以看到欧拉解决这个问题的关键就是把“七桥问题”变成了一个“一笔 画”问题,那么,欧拉又是怎样完成这一转变的呢? 他把岛、半岛和陆地的具体属性舍去,而仅仅留下与问题有关的东西,这就是四个几何 上的“点”;他再把桥的具体属性排除,仅留下一条几何上的“线”,然后,把“点” 与“线”结合起来,这样就实现了从客观事物到图形的转变。

我们把得到“点”和“线 ”的思维方法叫做抽象,把由“点”和“线”结合成图形的思维方法叫做概括。所谓抽 象就是从客观事物中排除非本质属性,透过现象抽出本质属性的思维方法。概括就是将 个别事物的本质属性结合起来的思维方法。 Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。Konigsberg城中有一条名叫Pregel的河流横经其中,在河上建有七座桥如图所示: 这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。 Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示,便得如下的图后来推论出此种走法是不可能的。他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。

所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。 七桥所成之图形中,没有一点含有偶数条数,因此上述的任务是不可能实现的。

延伸阅读:

科技画怎么画呀你可以用水溶彩铅来画,这个相对简单,它的形状用法都和彩铅相似,但可以用水来润色,画面看起来干净利落,能比较容易的画出科技感觉,如果你用彩色铅笔,画不好很容易显得幼稚,粗糙,水溶彩...

英语课的单词怎么写怎么画怎么说怎么念怎么画英语课的单词怎么写怎么画怎么说怎么念怎么画 How do you say how to write the words in English class ————————————————— 您好,用心、细心为您答疑解惑;...

画全家福怎么画方法/步骤 打开原图,我们看到照片虽然破损布满裂纹,但是人物重要的五官部分受损还不是太严重;所以我们使用修补工具来完成这个照片; 我们先用选框工具选择边缘的地方然后填充相...

怎么画简单的立体画1,准备材料:工笔刀、彩铅、橡皮、尺子、白纸。 2,然后在纸上画出下面的图形,阴影部分也画出来。 3,然后开始用彩铅上色。 4,涂色,我们要注意颜色的过度变化,根据光源的取向把颜色...

科技幻想画应该怎么画你可以用水溶彩铅来画,这个相对简单,它的形状用法都和彩铅相似,但可以用水来润色,画面看起来干净利落,能比较容易的画出科技感觉,如果你用彩色铅笔,画不好很容易显得幼稚,粗糙,水溶彩...

圣诞树怎么画?快快快快快?圣诞树怎么画圣诞树,是庆祝圣诞节的传统活动之一。它是用灯烛和彩色的装饰物把松树装点起来的常青树,代表着喜庆吉祥之意~~一年一度的圣诞节就要到来了,大家快来和我一起学习一下圣诞树简笔...

七桥问题怎么走有没有答案七桥问题怎么走有没有答案,七桥问题如何做:几百年前就被欧拉证实了:七桥问题是无解的 欧拉将七桥问题抽象出来,把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。并由此得到...

泼墨画怎么画呢泼墨画怎么画呢:泼墨法是用极湿墨,即大笔蘸上饱和之水墨,下笔要快,慢则下笔墨水渗开,不见点画,等干或将干之后,再用浓墨泼。即在较淡墨上,加上较浓之笔,使这一块淡墨中,增加层次。也有...

画小花伞怎么画画小花伞怎么画,一把普通的雨伞是怎么生产出来的:活动目标: 1、引导幼儿学习用各种材料和工具由中心向四周装饰伞面。 2、增强幼儿对色彩美和对称美的感受。 活动流程: 参观“小...

推荐阅读
图文推荐
栏目列表