[高三数学数列解题方法]以下纯属个人观点.如有雷同,不甚荣幸 1,数列其实就是找规律,看一个数列,首先要看到数列本身的变化规律,并将复杂数列通过,对个体的分解,或是对多项的合并,又或是通其他可行的方法,使...+阅读
初中数学竞赛常用的解题方法几其例题
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点——费马点。到三角形三顶点距离的平 方和最小的点——重心。三角形内到三边距离之积最大的点——重心。 几何不等式。 简单的等周问题。了解下述定理: 在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的筒单闭曲线的集合中,圆的面积最大。 在面积一定的n边形的集合中,正n边形的周长最小。 在面积一定的简单闭曲线的集合中,圆的周长最小。 几何中的运动:反射、平移、旋转。 复数方法、向量方法*。 平面凸集、凸包及应用。 2.代 数 在一试大纲的基础上另外要的内容: 周期函数与周期,带绝对值的函数的图像。 三倍角公式,三角形的一些简单的恒等式,三角不等式。
第二数学归纳法。 递归,一阶、二阶递归,特征方程法。 函数迭代,n次迭代*,简单的函数方程*。 n个变元的平均不等式,柯西不等式,排序不等式及应用。 复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。 圆排列,有重复的排列与组合。简单的组合恒等式。 一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。 简单的初等数论问题,除初中大纲中斯包括的内容外,还应包括无穷递降法,同余,欧几里 得除法,非负最小完全剩余类,高斯函数[x],费马小定理,欧拉函数*,孙子定理*,格点及其质
高中数理化竞赛内容涉及哪些方面
全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要和内容,但在方法的要上有所提高。
全国高中数学联赛加试
全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:
1.平面几何
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数
周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*
3. 初等数论
同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题
圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
高中数学竞赛的范围
全国高中数学联赛 —试 全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要和内容,即高考所规定的知识范围和方法,在方法的要上略有提高,其中概率和微积分初步不考。 二试 1.平面几何 基本要:掌握初中竞赛大纲所确定的所有内容。 补充要:面积和面积方法。 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点——费马点。到三角形三顶点距离的平方和最小的点——重心。三角形内到三边距离之积最大的点——重心。 几何不等式。 简单的等周问题。了解下述定理: 在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的筒单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。 在面积一定的简单闭曲线的集合中,圆的周长最小。 几何中的运动:反射、平移、旋转。 复数方法、向量方法*。 平面凸集、凸包及应用。 2.代数 在一试大纲的基础上另外要的内容: 周期函数与周期,带绝对值的函数的图像。 三倍角公式,三角形的一些简单的恒等式,三角不等式。 第二数学归纳法。 递归,一阶、二阶递归,特征方程法。 函数迭代,n次迭代*,简单的函数方程*。 n个变元的平均不等式,柯西不等式,排序不等式及应用。 复数的指数形式,欧拉公式,棣美弗定理,单位根,单位根的应用。 圆排列,有重复的排列与组合。简单的组合恒等式。 一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
简单的初等数论问题,除初中大纲中斯包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数[x],费马小定理,欧拉函数*,孙子定理*,格点及其性质。 3.立体几何 多面角,多面角的性质。三面角、直三面角的基本性质。 正多面体,欧拉定理。 体积证法。 截面,会作截面、表面展开图。 4.平面解析几何 直线的法线式,直线的极坐标方程,直线束及其应用。 二元一次不等式表示的区域。 三角形的面积公式。 圆锥曲线的切线和法线。 因的幂和根轴。 5.其它 抽屉原理。 容斥原理。 极端原理。 集合的划分。 覆盖。
延伸阅读:
求初中数学模型解题法这里我提一些常见的也是重难点的模型,希望对你解题有所帮助。 第一,抽屉原则。 “抽屉原则”实际上是一种分类的思想,关键是制造抽屉,即如何分类。 第二,转化为生活数学问题,即“...
求中学数学常用的解题方法1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配...
初中数学解题方法大全选择题:一般只考一到两个知识点,这一类题目主要是看你对概念的熟悉程度。 填空题:基本和选择题一样,还有就是要仔细,填空题的最后一题一般是有难度的,但也别慌,肯定是学过的,老师讲...
初中数学常用公式常见的初中数学公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点...
求中学数学解题方法全反证法是一种间接的证题方法,它是通过证明原命题的等价命题——逆否命题,从而证明原命题的。它的通常意义是:把结论的否定纳入到原命题的条件中,使它与已知条件共同为条件,由此经...
初中数学难题的解题思路初中数学答题方法和解题思路总结 数学,在同学们的学习生涯中始终充当着考试和升学的主力军,小升初数学是重点考查对象,初升高数学更是重点考查对象,而高考中对于数学地位的要求...
初中数学课堂教学几种常用的导入方法一、温固知新导入法 温固知新的教学方法,可以将新旧知识有机的结合起来,使学生从旧知识的复习中自然获得新知识。例如:在讲切割定理时,先复习相交弦定理内容及证明,即“圆”内两...
数学归纳法常用方法数学归纳法有以下五种形式: 1。第一数学归纳:证明对于某个初始自然数(比如1),命题P成立;然后在假设命题P对于自然数N成立的基础上,证明P对于N+1也成立。 2。第二数学归纳:证明对于某...
如何培养初中学生数学解题能力如何培养初中学生数学解题能力,如何提高学生的数学解题思维能力:阅读是思考、是理解。数学对于培养人的分析能力,提高人的思维品质,有极高的教育价值。数学课的阅读教学,正是以培...