范文无忧网计划总结工作总结

谁能总结函数图像知识点

02月13日 编辑 fanwen51.com

[英语总结知识点]一、表示“想象”、“设想”、“以为” 1. 可用于被动结构和系表结构。如: It can easily be imagined.这很容易想象出来。 2.可接名词作宾语。如: Imagine a railway station...+阅读

高中数学函数知识点总结 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 显然,这里很容易解出A={-1,3}.而B最多只有一个元素。故B只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是, 这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。 3. 注意下列性质: 要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2, a3,……an,都有2种选择,所以,总共有 种选择, 即集合A有 个子集。 当然,我们也要注意到,这 种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为 ,非空真子集个数为 (3)德摩根定律: 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 注意,有时候由集合本身就可以得到大量信息,做题时不要错过; 如告诉你函数f(x)=ax2+bx+c(a>0) 在 上单调递减,在 上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上 ,也应该马上可以想到m,n实际上就是方程 的2个根

5、熟悉命题的几种形式、 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。

6、熟悉充要条件的性质(高考经常考) 满足条件 , 满足条件 , 若 ;则 是 的充分非必要条件 ; 若 ;则 是 的必要非充分条件 ; 若 ;则 是 的充要条件 ; 若 ;则 是 的既非充分又非必要条件 ; 7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?

(一对一,多对一,允许B中有元素无原象。) 注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B的映射个数有nm个。 如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。 函数 的图象与直线 交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型? 函数定义域求法: l 分式中的分母不为零; l 偶次方根下的数(或式)大于或等于零; l 指数式的底数大于零且不等于一; l 对数式的底数大于零且不等于一,真数大于零。 l 正切函数 l 余切函数 l 反三角函数的定义域 函数y=arcsinx的定义域是 [-1, 1] ,值域是 ,函数y=arccosx的定义域是 [-1, 1] ,值域是 [0, π] ,函数y=arctgx的定义域是 R ,值域是 .,函数y=arcctgx的定义域是 R ,值域是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。 10. 如何求复合函数的定义域? 义域是_____________。 复合函数定义域的求法:已知 的定义域为 ,求 的定义域,可由 解出x的范围,即为 的定义域。 例 若函数 的定义域为 ,则 的定义域为 。 分析:由函数 的定义域为 可知: ;所以 中有 。 解:依题意知: 解之,得 ∴ 的定义域为

11、函数值域的求法

1、直接观察法 对于一些比较简单的函数,其值域可通过观察得到。 例 求函数y= 的值域

2、配方法 配方法是求二次函数值域最基本的方法之一。 例、求函数y= -2x+5,x [-1,2]的值域。

3、判别式法 对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面 下面,我把这一类型的详细写出来,希望大家能够看懂

4、反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例 求函数y= 值域。

5、函数有界性法 直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。 例 求函数y= , , 的值域。

6、函数单调性法 通常和导数结合,是最近高考考的较多的一个内容 例求函数y= (2≤x≤10)的值域

7、换元法 通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角 函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发 挥作用。 例 求函数y=x+ 的值域。 8 数形结合法 其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这 类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。 例:已知点P(x.y)在圆x2+y2=1上, 例求函数y= + 的值域。 解:原函数可化简得:y=∣x-2∣+∣x+8∣ 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。 由上图可知:当点P在线段AB上时, y=∣x-2∣+∣x+8∣=∣AB∣=10 当点P在线段AB的延长线或反向延长线上时, y=∣x-2∣+∣x+8∣>∣AB∣=10 故所求函...

延伸阅读:

谁能给我必修1的数学知识点的总结一、集合与简易逻辑: 一、理解集合中的有关概念 (1)集合中元素的特征: 确定性 , 互异性 , 无序性 。 (2)集合与元素的关系用符号=表示。 (3)常用数集的符号表示:自然数集 ;正整数集 ;整数...

求高中数学必修1的知识点总结急!1. 集合 (约4课时) (1)集合的含义与表示 ①通过实例,了解集合的含义,体会元素与集合的“属于”关系。 ②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,...

二次函数的定义图像性质都是有哪些二次函数:y=ax^2+bx+c (a,b,c是常数,且a不等于0) a>0开口向上 a<0开口向下 a,b同号,对称轴在y轴左侧,反之,再y轴右侧 |x1-x2|=根号下b^2-4ac除以|a| 与y轴交点为(0,c) b^2-4ac>0,ax...

二次函数的图象和性质二次函数的图象是一条抛物线。 1、抛物线当a>0时,向上无限延伸,同时a>0,抛物线开口向上 抛物线当a<0时,向上无限延伸,同时当a<0时,抛物线开 口向下。 2、抛物线以y轴为对称轴,由于y...

雅思语法都有哪些知识点参考资料:.ielts580.com .ielts-school.com 表示升职了是用promote还是upgrade好啊?还有,对某人,是用for sb还是to sb? 用promote对某人具体用for还是用to一般需要单独记忆。不过...

如果才能归纳出雅思方面的一些知识点现在很多学生在学习雅思的过程中容易产生一个误区,就是容易就题论题,也就是在学习的过程中容易忽视对相关知识点的归纳,分析和总结经验。雅思考试不同于广大中学生所熟知的中,高...

高中所有函数图象一次函数 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx (k为常数,k≠0) 二、一次函数的性质: 1.y...

高中数学函数的图像与性质1、一次函数的定义 一般地,形如ykxb(k,b是常数,且0k)的函数,叫做一次函数,其中x是自变量。当0b时,一次函数ykx,又叫做正比例函数。 ⑴一次函数的解析式的形式是ykxb,要判断一个函数是...

高中数学函数图像a<0 y=(1+ax^2)/x y=[1+√(-a)x][1-√(-a)x]/x 经过零点(-1/√(-a),0)、(1/√(-a),0)、原点(原点画空心点), 粗略画图,画的时候从右到左,从下到上依次经过这几个点,即x>1/√(-a)的部分在x轴下方,0...

推荐阅读
图文推荐
栏目列表