[己知一个数的几倍数是多少求这个数教学反思]一个数除以小数是在小数除以整数的基础上教学的,小数除以整数这一部分学生掌握好了,一个数除以小数的教学就容易很多.学生在这个部分学习的重点是理解把除数转化成整数是根据...+阅读
求一个数占另一个数的百分之几怎么做
教学目的1.通过知识迁移使学生掌握求一个数是另一个数的百分之几应用题的结构特征及解题规律。2.正确列式,掌握计算方法,准确计算。教学重点明确单位“1”,会列关系式。教学难点能够根据题中条件找出和关系式中相对应的数量。教学过程
(一)复习准备1.什么叫百分数?2.把下列各数化成百分数。 (保留一位小数)0。75= 1。25= 0。786=1。763≈ 0。9855≈3.列式计算,说分析思路。六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?说思路:关键句是“占六年级学生人数的几分之几”,也就是120人占六年级学生人数的几分之几。 和六年级人数相比,六年级人数做单位“1”,关系式为已达标人数÷六年级人数小结:这是求一个数是另一个数的几分之几的应用题。因为所求的问题是表示两个数量之间的倍数关系,所以用除法计算。关键是找单位“1”,用单位“1”做除数。
(二)讲授新课改变准备题为例题,把“几”改成“百”。 例1六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?1.读题,说出例题与准备题有什么不同?百分数表示什么?(表示两个量之间的倍数关系。)这道题与准备题的解题思路一样吗?2.说解题思路。(小组互说,集体订正。 )这道题的关键句是“占六年级学生人数的百分之几”,把问题补充完整,也就是已达到《国家体育锻炼标准》的120人占六年级学生人数的百分之几。和六年级人数比,六年级人数是单位“1”,做标准量。达到国家体育锻炼标准的120人是和六年级学生人数相比的量。 3.列关系式:已达到国家体育锻炼标准的人数÷六年级总人数4.列式:(板书)120÷160=0。75=75%答:占六年级学生人数的75%。请同学们看计算格式:通常先求出商,用小数表示,然后,再转化成百分数。问:结果表示什么?为什么没单位名称?(体育达标的人数与六年级学生人数是倍数关系,所以没有单位名称。 )5.求一个数是另一个数的几分之几与求一个数是另一个数的百分之几的应用题有什么相同点和不同点?(相同点:应用题的结构特征、数量关系、解题方法都用除法计算;不同点是最后结果,一个用分数表示两数间的倍数,另一个是用百分数表示两数间的倍数关系。)6.解这类题的关键是什么?(明确单位“1”的量;找准与单位“1”相比的量,用与单位“1”相比的量除以单位“1”。 )7.过渡到例2。百分数还可以叫做什么?(百分率,百分比。)你在日常生活中,听到过哪些率?(发芽率,出勤率,合格率……)求这些率有什么作用?表示什么意思呢?师:实行科学种田,为了保证基本苗数量,又避免浪费种子,就要先进行发芽率的试验。求发芽率就是求发芽的种子数占试验种子总数的百分之几。 通常用下面的公式计算:问:“率”表示什么?(两个数相除的商。)师:发芽率是百分率的一种,公式本身应该用百分数的形式(%)表示,所以,要“*100%”。例2某县种子推广站,用300粒玉米种子做发芽试验,结果发芽的种子有288粒。求发芽率。1.默读题,说已未知条件。 2.什么叫发芽率?(同桌互说)3.根据发芽率公式,自己列式。集体订正。问:结果有单位名称吗?为什么?4.根据发芽率的公式,你们能说出求下列百分率的公式吗?(边说边投影。)想一想:你能告诉大家一个百分率公式吗?5.练习:第137页“做一做”。强调先写公式,再列式计算。 (集体订正。)
(三)巩固练习(投影)1.一班种树40棵,二班种树48棵,二班种的棵数占一班的百分之几?(集体订正)48÷40=120%为什么不是40÷48?
(一班是单位“1”,一班种的棵数做除数,二班种的棵数是和一班相比的量,做被除数。)2.读题,说单位“1”;列式,说结果。 ①2是5的百分之几?(5是单位“1”,2÷5=0。4=40%。)②5是2的百分之几?(2是单位“1”,5÷2=2。5=250%。)③4千米相当于5千米的百分之几?(5千米是单位“1”,4÷5=0。8=80%。)④20分钟是1小时的百分之几?能直接列式吗?先怎么办?3.以小组为单位说分析思路后,个人在本上列式,集体订正。 ①某村前年造林15公顷,去年造林18公顷,是前年造林的百分之几?②某种录音机原价560元,现价是320元。现价是原价的百分之几?原价是现价的百分之几?③某生产队割青草200吨,晒成干草后还有120吨。求青草的含水率?关键要明确,青草含水重量,就是失去的水分,即:青草晒成干草后少的重量。 ④某年级一班有男生22人,女生20人。女生占男生的百分之几?男生占女生的百分之几?男生占全班人数的百分之几?分析第三问,全班人数是单位“1”,全班人数是男生和女生的总和,所以,除数就是男女生人数的和,列式为:22÷(22+20)。问:第三问与前两问有什么区别?⑤某区绿化环境,前年种花草200公顷,去年比前年多40公顷。 前年种花种草是去年的百分之几?小组讨论分析,谁是单位“1”,谁是和单位“1”相比的量?会列式吗?集体订正。4.根据:“24,60”两个数编“求一个数是另一个数的百分之几”的题。
(四)课堂总结这节课我们学习了什么...
求一个数的百分之几是多少与求比一个数多百分之几的数是多少
教学目标:
1、掌握稍复杂的求比一个数多百分之几的数是多少的问题的解决方法;
2、能进一步理解百分数应用题与相对应的分数应用题之间的联系;
3、增强应用意识,体会百分数在实践生活中的应用;
4、提高学生类推、分析、解决问题的能力。教学重难点:找准单位“1”,掌握求比一个数多百分之几的数是多少的问题的解决方法。教学过程:
一、 回顾旧知,复习铺垫
(1)、口算 3/4*4 2/3÷2/3 1+12% (2)、20的3/5是多少? 30的70%是多少?(设计意图:回顾“求一个数的几分之几(百分之几)是多少”的计算方法,以及百分数的相关计算,为新知做铺垫。)
二、 师生互动,探究新知
(一)、自主提问,生成问题。
1、教师口述信息:学校图书室原有图书1400册,今年图书册数增加了12%。
2、抽生复述刚才听到的信息。(设计意图:培养学生记忆能力与良好的听课习惯。)
3、学生提出相关百分数问题,引入例题。预设问题:①、增加了多少册? ②、今年有多少册图书? ③今年的图书册数是原来的百分之几?(设计意图:动脑提问把学生放在了学习的主体地位,让学生积极去思维,不仅培养了学生的问题意识,又充分调动了学生对课堂的关注,为后面的教学做铺垫。)
(二)、解决问题,引出例题。
1、出示例3:师述:用刚才的信息加上同学们提出的第二个问题,就是我们今天要学习的例3。例3:学校图书室原有图书1400册,今年图书册数增加了12%。现在有多少册图书?
2、分析数量关系,确定解决问题的方法。
(1)、重点指导分析“今年图书册数增加了12%”。引导:思考“今年图书册数增加了12%”是什么意思?在那见过类似的问题?如果把12%换成一个分数你会解决吗?(我们可以借助解决分数应用题的方法来解决百分数应用题。)等量关系是什么?(今年图书册数=原来图书册数+增加的册数)单位“1”是那个量?我们先求什么?(即问题①)求增加了多少册就是求什么?怎么列式?(1400*12%)(教师指导一个数乘百分数的计算方法。)(设计意图:回顾旧知,以旧引新,借助分数应用题的解题思路、方法让学生从字面意义上理解“今年图书册数增加了12%”的意思,注重知识的迁移类推,学习解题方法,给学生探索的空间,经历知识的形成过程。)
(2)、根据等量关系式列式解答,强调过程的完整性。(抽生板演)(设计意图:针对学生实际,让学生学习一些计算方法与技巧,培养学生良好的思维习惯和学习习惯。)
(3)、抽生说说算式的意义,回顾解题思路,说说解题的关键点是什么?(找单位“1”和等量关系。)(设计意图:通过回顾解题思路,让学生学习解题思路与方法。)
(三)、一题多解,拓展思维。思考:解决这类问题还有什么方法?
(1)、提示:借助刚才提出的问题③思考。
(2)、学生独立思考列式。1400*(1+12%)(3)、抽生说思路。
(4)、借助线段图分析“今年的图书册数是原来的百分之几?”(设计意图:渗透数形结合思想,同时让学生学习解决问题的办法。)
(5)、找准解决问题关键点。
(6)、列式解答。
(四)、分析特征,自主归类。
1、师生一起归类,这类题属于“求比一个数多(少)百分之几的数是多少”的问题。
2、回顾这类题的解题思路与方法。(设计意图:培养学生分析、归类能力与自主学习能力。)
三、联系实际,对比提升。
1、改编例3并解答。学校图书室现在有图书1568册,今年图书册数增加了12%。今年图书有多少册?
(1)、学生自主思考解答。
(2)、小组合作解答。
(3)、全班交流。
2、分析这道题与例题有什么相同点和不同点。
3、比较今天学的这类题与分数应用题有什么相同点和不同点。(设计意图:让学生进一步熟练解题方法,即无论条件怎样变化,都要先弄清数量关系,找准单位“1”,这样学生的分析能力、总结概括能力和思维水平都得到了进一步提高。)
四、 联系生活,深化新知。
1、比30米多60%是( )米。 40千克比( )少20%。
2、做一做1题。
3、某食堂今年冬天买了1000千克白菜,已经吃了60%,还剩多少千克?(设计意图:练习体现层次性,让学生的思维有一个拨高训练的过程,并提高学生的综合运用能力。)
五、 课堂小结:这节课你收获了什么?(设计意图:学生对自己获得的知识与方法进行回顾反思,总结经验,取长补短。)
六、 布置作业。把今天的收获写在日记本上。(设计意图:通过写日记,对课堂上的的收获有一个在回顾、梳理的过程,这样有助于将知识系统化,方法条理化,不仅可以巩固所学知识,而且还可以培养学生的逻辑思维能力和语言表达能力。)用百分数解决问题求比一个数多百分之几或少百分之几的的应用题方法一: 方法二:现在图书册数=原有册数+增加的册数 现在图书册数=原有册数*(1+12%) 1400*12% 1400*(1+12%) =168(册) =1400*112% 1400+168=1568(册) =1568(册) 答:现在有图书1568册。 答:现在有图书1568册。教学反思:这节课的设计主要让学生根据在分数应用题里的,求比一个数多或少几分之几的应用题的解题思路,作为铺垫,从而促进学生知识的迁移,让学生利用已有的知识...
求比一个数多少百分之几的数是多少教学设计
教学目标:
1、掌握稍复杂的求比一个数多百分之几的数是多少的问题的解决方法;
2、能进一步理解百分数应用题与相对应的分数应用题之间的联系;
3、增强应用意识,体会百分数在实践生活中的应用;
4、提高学生类推、分析、解决问题的能力.教学重难点:找准单位“1”,掌握求比一个数多百分之几的数是多少的问题的解决方法.教学过程:
一、 回顾旧知,复习铺垫
(1)、口算 3/4*4 2/3÷2/3 1+12% (2)、20的3/5是多少? 30的70%是多少?(设计意图:回顾“求一个数的几分之几(百分之几)是多少”的计算方法,以及百分数的相关计算,为新知做铺垫.)
二、 师生互动,探究新知
(一)、自主提问,生成问题.
1、教师口述信息:学校图书室原有图书1400册,今年图书册数增加了12%.
2、抽生复述刚才听到的信息.(设计意图:培养学生记忆能力与良好的听课习惯.)
3、学生提出相关百分数问题,引入例题.预设问题:①、增加了多少册? ②、今年有多少册图书? ③今年的图书册数是原来的百分之几?(设计意图:动脑提问把学生放在了学习的主体地位,让学生积极去思维,不仅培养了学生的问题意识,又充分调动了学生对课堂的关注,为后面的教学做铺垫.)...
求比一个数多或少百分之几的数是多少的教案
教学目标:
1、掌握稍复杂的求比一个数多百分之几的数是多少的问题的解决方法;
2、能进一步理解百分数应用题与相对应的分数应用题之间的联系;
3、增强应用意识,体会百分数在实践生活中的应用;
4、提高学生类推、分析、解决问题的能力。教学重难点:找准单位“1”,掌握求比一个数多百分之几的数是多少的问题的解决方法。教学过程:
一、 回顾旧知,复习铺垫
(1)、口算 3/4*4 2/3÷2/3 1+12% (2)、20的3/5是多少? 30的70%是多少?(设计意图:回顾“求一个数的几分之几(百分之几)是多少”的计算方法,以及百分数的相关计算,为新知做铺垫。)
二、 师生互动,探究新知
(一)、自主提问,生成问题。
1、教师口述信息:学校图书室原有图书1400册,今年图书册数增加了12%。
2、抽生复述刚才听到的信息。(设计意图:培养学生记忆能力与良好的听课习惯。)
3、学生提出相关百分数问题,引入例题。预设问题:①、增加了多少册? ②、今年有多少册图书? ③今年的图书册数是原来的百分之几?(设计意图:动脑提问把学生放在了学习的主体地位,让学生积极去思维,不仅培养了学生的问题意识,又充分调动了学生对课堂的关注,为后面的教学做铺垫。)
(二)、解决问题,引出例题。
1、出示例3:师述:用刚才的信息加上同学们提出的第二个问题,就是我们今天要学习的例3。例3:学校图书室原有图书1400册,今年图书册数增加了12%。现在有多少册图书?
2、分析数量关系,确定解决问题的方法。
(1)、重点指导分析“今年图书册数增加了12%”。引导:思考“今年图书册数增加了12%”是什么意思?在那见过类似的问题?如果把12%换成一个分数你会解决吗?(我们可以借助解决分数应用题的方法来解决百分数应用题。)等量关系是什么?(今年图书册数=原来图书册数+增加的册数)单位“1”是那个量?我们先求什么?(即问题①)求增加了多少册就是求什么?怎么列式?(1400*12%)(教师指导一个数乘百分数的计算方法。)(设计意图:回顾旧知,以旧引新,借助分数应用题的解题思路、方法让学生从字面意义上理解“今年图书册数增加了12%”的意思,注重知识的迁移类推,学习解题方法,给学生探索的空间,经历知识的形成过程。)
(2)、根据等量关系式列式解答,强调过程的完整性。(抽生板演)(设计意图:针对学生实际,让学生学习一些计算方法与技巧,培养学生良好的思维习惯和学习习惯。)
(3)、抽生说说算式的意义,回顾解题思路,说说解题的关键点是什么?(找单位“1”和等量关系。)(设计意图:通过回顾解题思路,让学生学习解题思路与方法。)
(三)、一题多解,拓展思维。思考:解决这类问题还有什么方法?
(1)、提示:借助刚才提出的问题③思考。
(2)、学生独立思考列式。1400*(1+12%)(3)、抽生说思路。
(4)、借助线段图分析“今年的图书册数是原来的百分之几?”(设计意图:渗透数形结合思想,同时让学生学习解决问题的办法。)
(5)、找准解决问题关键点。
(6)、列式解答。
(四)、分析特征,自主归类。
1、师生一起归类,这类题属于“求比一个数多(少)百分之几的数是多少”的问题。
2、回顾这类题的解题思路与方法。(设计意图:培养学生分析、归类能力与自主学习能力。)
三、联系实际,对比提升。
1、改编例3并解答。学校图书室现在有图书1568册,今年图书册数增加了12%。今年图书有多少册?
(1)、学生自主思考解答。
(2)、小组合作解答。
(3)、全班交流。
2、分析这道题与例题有什么相同点和不同点。
3、比较今天学的这类题与分数应用题有什么相同点和不同点。(设计意图:让学生进一步熟练解题方法,即无论条件怎样变化,都要先弄清数量关系,找准单位“1”,这样学生的分析能力、总结概括能力和思维水平都得到了进一步提高。)
四、 联系生活,深化新知。
1、比30米多60%是( )米。 40千克比( )少20%。
2、做一做1题。
3、某食堂今年冬天买了1000千克白菜,已经吃了60%,还剩多少千克?(设计意图:练习体现层次性,让学生的思维有一个拨高训练的过程,并提高学生的综合运用能力。)
五、 课堂小结:这节课你收获了什么?(设计意图:学生对自己获得的知识与方法进行回顾反思,总结经验,取长补短。)
六、 布置作业。把今天的收获写在日记本上。(设计意图:通过写日记,对课堂上的的收获有一个在回顾、梳理的过程,这样有助于将知识系统化,方法条理化,不仅可以巩固所学知识,而且还可以培养学生的逻辑思维能力和语言表达能力。)用百分数解决问题求比一个数多百分之几或少百分之几的的应用题方法一: 方法二:现在图书册数=原有册数+增加的册数 现在图书册数=原有册数*(1+12%) 1400*12% 1400*(1+12%) =168(册) =1400*112% 1400+168=1568(册) =1568(册) 答:现在有图书1568册。 答:现在有图书1568册。教学反思:这节课的设计主要让学生根据在分数应用题里的,求比一个数多或少几分之几的应用题的解题思路,作为铺垫,从而促进学生知识的迁移,让学生利用已有的知识...
延伸阅读:
求一个是另一个数的几倍是多少教学设计及反思展开全部 一、教材简析: “求一个数是另一个数的几倍”, 是在学生掌握了一些数与计算的知识,理解倍的概念和除法的含义,以及掌握了用7~9的乘法口诀求商基础上,进一步学习用除法解...
求一个数的百分之几是多少的教学反思这个内容是在学生学过用分数解决问题,百分数的意义,百分数、分数和小学的互化的基础上进行教学的。主要内容是求常见的百分率,即求一个数是另一个数的百分之几的实际问题,这个问...
小学数学优秀案例求一个数的几倍是多少教学设计与反思《求一个数的几倍是多少》教学设计与反思 人教版义务教育课程实验标准教科书小学数学第六单元第一节第二课时 教材分析 《求一个数的几倍是多少》是小学生初次接触“倍”的...
求4个数学作文。额 你说的数学作文 初一的 还真是有难度 高一的我还能给你上百个。给你4个方程题,貌似印象中初一还没有学三角形。- -。其实方程题就只有初一在学。。初二初三都不学的,但是中...
人教版小学数学二年级上册求一个数的几倍是多少教学设计人教版小学数学二年级上册第76页例2、例3、例4.P76做一做,P77做一做,练习十七的第一题。 【教学目标】: 知识目标:结合具体情境,理解“几倍”与“几个几”的联系,建立“倍”的概念...
十个数学小故事蒲丰试验 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲...
帮忙回答几个数学谜语和猜成语猜数学名词 1、看谁力量大 ---比例 (比力) 2、全部消灭 ---整除 猜成语 1、1x1 --- 一成不变 (一乘不变) 2、四分之三 ---低三下四 3、3.4 --- 不三不四 猜汉字 1、30天除以2 --...
麻烦提供几个数独的题目1.2** *** *1* **6 73* *** 5** **9 **8 8** **5 *9* *24 *1* *** *** **4 **3 *3* *4* **6 **9 2** *8* *** *** 3**2.*8* *4* 7** *** *9* **4 4*5 *28 1** **7 *3* *9* *...
一年级数学下册求一个数比另一个数多几少几教学反思“求一个数比另一个数多几或少几”,学生学习这一内容已有一定的的知识基础, 通过直观操作,明示数量关系,紧扣减法含义,让学生理解算理、掌握算法。 要让一年级的学生理解和掌握求...