[求高中数学函数总结]幂函数,指数函数,对数函数,三角函数,反三角函数…… 满意请采纳 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? A表示函数y=lgx...+阅读
幂函数的一般形式为y=x^a。
如果a取非零的有理数是比较容易理解的,不过初学者对于a取无理数,则不太容易理解,在我们的课程里,不要求掌握如何理解指数为无理数的问题,因为这涉及到实数连续统的极为深刻的知识。因此我们只要接受它作为一个已知事实即可。
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
延伸阅读:
帮忙总结下高数不定积分所需要用到的有关三角函数的公式三角函数诱导公式 目录 诱导公式的本质 常用的诱导公式 其他三角函数知识 1. 同角三角函数的基本关系式 2. 同角三角函数关系六角形记忆法 3. 两角和差公式 4. 二倍角的正弦...
多元函数微积分f(x+rcost,y+rsint)=f(x,y)+af/ax*rcost+af/ay*rsint+0.5(a^2f/ax^2*(rcost)^2+2a^2f/axay*(r^2costsint)+a^2/ay^2*(rsint)^2)+1/6(a^3f/ax^3(rcost)^3+3a^3f/ax^2ay*(r^3c...
多元函数微积分预备知识多元函数微积分包括多元函数的积分学和微分学。我们学习多元函数的微积分,主要讨论的是二元函数的微积分,二元以上的只是维数上升,只要还是有限维,那么和二元函数的微积分原理和...
高数复习中关于函数与极限一元函数微积分多元函数微积分函数与极限:1.求极限的方法(a.等价无穷小 b.落必达法则) 2.无穷小的比较 3.函数的连续性以及间断点 (注:等价无穷小,落必达,间断点的类型判断是重点) 导数的应用:其实就是对于物理的...
微积分多元函数积分学多元函数极值问题求详细过程2 x^2+2 x (y-1)+(y-2) y+(z-2)^2=0 z=2-Sqrt[-2 x^2-2 x y+2 x-y^2+2 y] z=Sqrt[-2 x^2-2 x y+2 x-y^2+2 y]+2 用Mathematica作图: ContourPlot3D[2 x^2 + y^2 + z^2 + 2 x...
考研数学多元函数微分t/2 = u dt = 2du t=0, u=0 t=2π, u=π (16a^4/3) ∫ (0->2π) [sin (t/2) ]^8 dt =(16a^4/3) ∫ (0->;π) (sinu)^8 .(2du) =(32a^4/3) ∫ (0->;π) (sinu)^8 du =(32a^4/3) [∫ (0-...
多元函数微分学高等数学微积分数一最难,内容多,而且深。数学一: 1、高等数学(函数、极限、连续、一元函数的微积分学、向量代数与空间解析几何、多元函数的微积分学、无穷级数、常微分方程); 2、线性代数; 3、概...
求函数极限的方法总结大学里用到的方法主要有: 1、四则运算法则(包括有理化、约分等简单运算); 2、两个重要极限(第二个重要极限是重点); 3、夹逼准则,单调有界准则; 4、等价无穷小代换(重点); 5、利用导数定...
高中数学函数专题总结三角知识,自成体系, 记忆口诀,一二三四。 一个定义,三角函数, 两种制度,角度弧度。 三套公式,牢固记忆, 同角诱导,加法定理。 同角公式,八个三组, 平方关系,导数商数。 诱导公式,两类九组...