范文无忧网公文文书入党入团

数学思想有哪些

02月26日 编辑 fanwen51.com

[初中数学模型思想有哪些]数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的...+阅读

数学思想有哪些

付费内容限时免费查看 回答 你好,很高兴为你解答。 数学思想包括:函数思想、数形结合思想、分类讨论思想、方程思想、整体思想、化归思想、隐含条件思想、类比思想、建模思想等。数学思想是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。

1、函数方程思想:指用函数的概念和性质去分析问题和解决问题。 例如:等差、等比数列中,前n项和的公式,都可以看成n的函数。

2、数形结合思想:利用“数形结合”可使所要研究的问题化难为易,化繁为简。 例如:求根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值。

3、分类讨论思想:问题因为某种量或图形的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。 例如:解不等式|a-1|>4的时候,就要分类讨论a的取值情况。

4、方程思想:一个问题可能与某个等式建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。 例如:证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式。

5、整体思想:从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征。 例如:叠加叠乘处理、整体运算、几何中的补形等都是整体思想。

6、化归思想:在于将未知的问题通过演绎归纳转化为已知的,熟悉的,简单的问题。 例如:三角函数,几何变换。

7、隐含条件思想:没有明文表述出来或者是没有明文表述,但是该条件是真理。 例如:一个等腰三角形,一条过顶点的线段垂直于底边,那么这条线段所在的直线也平分底边和顶角。

8、类比思想:把两个不同的数学对象进行比较,发现它们在某些方面有相同或类似之处,就推断它们在其他方面也可能有相同或类似之处。

9、建模思想:为了更具科学性可重复性地描述一个实际现象,采用一种普遍认为比较严格的语言来描述各种现象。 希望我的回答对您有帮助。 如果对我的解答满意的话,希望给我一个赞哦!谢谢ヾ(≧∇≦谢谢≧∇≦)ノ 提问 常用的数学解题方法有哪些? 回答 一.数学思想方法总论 高中数学一线牵,代数几何两珠连; 三个基本记心间,四种能力非等闲. 常规五法天天练,策略六项时时变, 精研数学七思想,诱思导学乐无边. 一 线:函数一条主线(贯穿教材始终) 二 珠:代数、几何珠联璧合(注重知识交汇) 三 基:方法(熟) 知识(牢) 技能(巧) 四能力:概念运算(准确)、逻辑推理(严谨)、 空间想象(丰富)、分解问题(灵活) 五 法:换元法、配方法、待定系数法、分析法、归纳法. 六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动. 七思想:函数方程最重要,分类整合常用到, 数形结合千般好,化归转化离不了; 有限自将无限描,或然终被必然表, 特殊一般多辨证,知识交汇步步高. 提问 数学的精髓和价值是什么? 回答 数学的理性赋予数学非常重要的价值,崇尚实事求是的精神,秉承着怀疑与批判的态度,崇尚追求真理、独立思考的理念,这些理念构成了数学精神的核心,同时这也是人性和理性的思想精髓所在。基于此,本文首先提出了当前数学教育中存在的 一些问题, 带着这些问题对数学的人文精神以及对数学教育价值展开了一系列分析,最后相信大家都能得到问题的答案,促进数学教学过程中人文精神与自然科学之间的有效融合,希望,本文的分析可以为大家带来一些思考。 提问 当前数学教育中存在哪些问题?该如何解决完善? 回答 师生间交流和互动不够。受传统应试教育影响,教师注重学习成绩的提高,但是却忽视了与学生的互动交流,不利于激发学生的学习兴趣。 3. 把理论教学与实践结合起来。由于小学生的抽象思维能力较差,不容易理解抽象的数学知识,教师可以针对小学生对身边事物感兴趣的特点,把学生熟知的事和教学联系起来,使学生对课堂上无法理解的知识在实践中得以解决。 提问 数学在社会实践中的应用有哪些? 回答

5、家庭生活成本计算,学习了数学以后就会在生活中不由自主的使用。经常被使用的是统筹方法,如煮饭过程中的一系列事物先后安排,都是有数学科学上的学问的。 提问 事物的排列与组合有哪些计巧? 回答 6,插板法 提问 能详细说一下这6种方法吗?谢谢! 回答 解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的 四名志愿者中任选- - 人有C(4, 1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的 工作有A(5, 3)=10种不同的选法,所以不同的选派方案共有C(4, 1) XA(5, 3)=240种,所以选B. 解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的 四名志愿者中任选- - 人有C(4, 1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的 工作有A(5, 3)=10种不同的选法,所以不同的选派方案共有C(4, 1) XA(5, 3)=240种,所以选B. 故共有56+56+28=140种。 所谓捆绑法,指在解决对于某几个元素要求相邻的...

数学上有哪些思想

1.函数与方程的思想 用变量和函数来思考问题的方法就是函数思想,函数思想是函数概念、图象和性质等知识更高层次的提炼和概括,是在知识和方法反复学习中抽象出的带有观念的指导方法。 深刻理解函数的图象和性质是应用函数思想解题的基础,运用方程思想解题可归纳为三个步骤:①将所面临的问题转化为方程问题;②解这个方程或讨论这个方程,得出相关的结论;③将所得出的结论再返回到原问题中去。 2.数形结合思想 在中学数学里,我们不可能把“数”和“形”完全孤立地割裂开,也就是说,代数问题可以几何化,几何问题也可以代数化,“数”和“形 ”在一定条件下可以相互转化、相互渗透。 3.分类讨论思想 在数学中,我们常常需要根据研究对象性质的差异。分各种不同情况予以考察,这是一种重要数学思想方法和重要的解题策略 ,引起分类讨论的因素较多,归纳起来主要有以下几个方面:

(1)由数学概念、性质、定理、公式的限制条件引起的讨论;

(2)由数学变形所需要的限制条件所引起的分类讨论;

(3)由于图形的不确定性引起的讨论;

(4)由于题目含有字母而引起的讨论。 分类讨论的解题步骤一般是:

(1)确定讨论的对象以及被讨论对象的全体;

(2)合理分类,统一标准,做到既无遗漏又无重复 ;

(3)逐步讨论,分级进行;

(4)归纳总结作出整个题目的结论。 4.等价转化思想 等价转化是指同一命题的等价形式.可以通过变量问题的条件和结论,或通过适当的代换转化问题的形式,或利用互为逆否命题的等价关系来实现。...

数学思想都有哪些

一,函数与方程的思想 函数描述了客观世界中相互关联的量之间的依存关系,是对问题本身的数量特征及制约关系的一种刻划。因此函数思想的实质是用联系和变化的观点提出数学对象之间的数量关系,并用映射给予严格的形式。对函数思想的研究,离不开函数的知识和应用这个基础。从这个意义上说,函数几乎成为贯穿中学数学的一条主线。中学的函数思想,应包括建立函数模型解决问题的意识、函数概念和性质的广泛运用、函数图象的应用。与此相衔接的有方程的思想、极限的思想,以及数列、不等式等知识。 方程的内容在中学阶段也同样经历了由浅入深的历程。其中最重要的变化是从具有确定解的方程,发展到解连续变化的方程;从注重解的数值特征,转向方程的几何意义,另外还有方程与多方面因素的相互联系。方程的思想是在这样的过程中逐步培养起来的。其中当然包含了通过设立未知量建立相等关系,即把未知看作已知的意识,还有如何用方程(方程组)的知识解决问题等等。 函数思想与方程思想的联系十分密切。如解方程f(x)=0就是求函数y=f(x)当函数值为零时自变量x的值;用函数y=f(x) 与 y=g(x)图象的“交轨”方法,可以求出或讨论方程f(x)=g(x)的根;参数方程是一种“函数组”化的方程,等等。这种联系提供了解决问题过程中转化的依据。 二,数形结合的思想 数形结合是根据数量与图形之间的关系,认识研究对象的数学特征、寻找解决问题的方法的一种数学思想方法。在中学数学中,数形结合的思想从渗透到形成和运用,经历了三个主要阶段: 1. 数——形对应 它是数形结合的基础。主要通过初中、高

一、高二的新授课阶段的学习逐步领悟和掌握的; 2. 数——形转化 它体现了数与形的关系在解决问题的过程中,如何作为一种方法而得到运用的。在新授课时这类例子已相当普遍(例如解析法、图解法等),在高三一轮复习中,则要使之系统化; 3. 数——形分工 这里指的是把应用数形结合思想作为解决问题过程中的一种策略,是数学规律性与灵活性的融合,也是本节主要内容。 从内容上看,数形结合的渠道主要有:

(1) 平面几何中的一些算法(主要是与解三角形有关的计算);

(2) 解析几何中点与坐标、曲线与方程、区域(区间)与不等式的对应;

(3) 函数与它的图象以及有关的几何变换;

(4) 三角函数的概念;复数的几何意义;

数学学科的六种思想是什么

1、转化思想:是一种重要的数学思想方法,所谓转化思想,就是把所要解决的问题转化为另一个较易解决的问题或已经解决的问题,具体地说,就是说把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“复杂”转化为“简单”,把“陌生”转化为“熟悉”,最终获得解原题的一种手段或方法,如在进行分式的加减运算时常将异分母分式转化同分母分式来加减,将分式除法运算转化为分式乘法运算;解分式方程时常将分式方程转化为整式方程来解决。

2、建模思想:就是运用数学知识解决实际问题。首先要经过观察、分析、把实际问题转化为数学问题,在列分式方程解应用题时,应先从实际问题中找出等量关系,即建立数学模型,然后根据数学模型来列分式方程,从而达到解决实际问题的目的。

3、分类讨论的思想:具体地说,就是把包含多种可能情况的问题,按某一标准分成若干类,然后对每一类分别进行解决,从而达到解决整个问题的步的,分类的一般原则是:标准统

一、不重不漏。

4、方程思想:就是把所要解决的问题通过设未知数列方程(组)的方法使问题得以解决或更容易解决。

5、数形结合思想:就是把图形与数量关系有机地结合起来,使数学问题更直观,更容易解决。

6、从一般到特殊的思想:先探索平行四边形,再探索矩形、菱形、正方形这些特殊平行四边形,先一般后特殊,在共性中寻找特性,是探索知识的主要方法。

延伸阅读:

小学数学思想方法有哪些1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。对应是人们对两个集合因素之间的联系的一种思想...

小学数学中常用的数学思想方法有哪些小学数学常用的教学方法有六种,分别是: 讲授法、谈话法、讨论法、练习法、演示法、动手操作法、启发法 1、讲授法 讲授法是教师运用口头语言向学生描绘情境、叙述事实、解释概...

数学解题思想有哪些建模,归类 1.函数思想: 把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。 2.数形结合思想: 把代数和几何相结合,例如对几何问...

初中数学有哪些解题思想初中数学中蕴含的数学思想方法很多,最基本最主要的有:转化的思想方法,数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。1. 对应的思想和方法:在初一代数入门教学...

小学数学思想方法有哪些数学广角所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现...

初中数学思想方法有哪些中学数学中的数学思想方法 数学思想方法,从接受的难易程度可分为三个层次: 一是基本具体的数学 方法,如配方法、换元法、待定系数法、归纳法与演绎法等;二是科学的逻辑方 法,如观...

数学方法和思想有哪些1.函数思想: 把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。 2.数形结合思想: 把代数和几何相结合,例如对几何问题用代数...

小学生数学思想有哪些中学生数学思想有哪些小学生数学思想有哪些中学生数学思想有哪些,关于思想方法方面的初一数学小论文:(1)界定范围:小学生基本数学思想(2)界定对象:1—6年级学生(3)界定内容:①数学思想,是指现实世界的空间...

数学思想都有哪些数学思想都有哪些,小学数学思想与方法有哪些:一,函数与方程的思想 函数描述了客观世界中相互关联的量之间的依存关系,是对问题本身的数量特征及制约关系的一种刻划。因此函数思...

推荐阅读
图文推荐
栏目列表