[初中数学教学中如何渗透数学思想方法初探]杨燕 贵州省福泉市第三中学 550500 摘要:所谓数学思想,就是人们对数学知识的本质认识和对数学规律的正确理解,它直接支配着数学的实践活动。所谓数学方法,就是解决数学问题的根...+阅读
以初中数学知识为主数学思想方法问题探究数学在生活中的应
数学是一门理论性很强的科目,有很多的思维,如逆向思维、空间思维、整体代入思维、逻辑思维等,那么学好数学该怎么做呢?我想,许多数学不好的同学并不是不想学,学数学有个普遍的现象,就是:不是说不知道学习的方法,只不过是预习——学习——复习而已,但是为什么上课听得懂老师讲的所有内容,但到做题或考试的时候不会做呢?我想这是许多人想问的问题。下面我为大家讲讲学如何数学。数学做题就是靠运用能力和思维能力,这两个因素是决定数学成绩的高低。1.提高运用能力。在这个的前提下,必须是要有基础的前提下才行。提高运用能力,我们只有多做题这个办法,才能提高运用所学的知识的能力,其实这个比不难,只要多做题,不懂就问。2.思维能力。
这思维能力是运用能力的基础,没思维能力何谈运用能力,所以提高思维能力是非常重要的。我们可以尝试一下下棋,下些有竞赛的棋,比如中国象棋,围棋,国际象棋等,千万不要下些飞行棋啊之类的,那些棋下来根本毫无意义(注意:比不是讲你走下棋的这条路),在下棋的过程中,通过思考这步怎么走,下步怎么走,可以训练逻辑思维能力,逻辑思维能力提高了,那你的数学写理由和证明的过程中就会越来越规范,理由不在跌三道四的。提高其他的思维能力,可以玩脑经急转弯或做些趣味数学题,这样也可以提高对数学的兴趣,有能力的可以做适合自己的奥林匹克数学题,做不出不奇怪,因为那些题非常难,分数没及格就可以难全国的一等奖了,所以做不出不奇怪,但要看那些做题的步骤,而且要看得明白,那样会提高各个思维能力的。
只是本人多年来对数学的总结和经练,希望对你有帮助,毕竟是多年来的心血。谢谢!最好祝你们学习进步!
初中数学论文急急急急急急急急急急急急急
有1个导游带了1个旅游团到香港旅游,他看到了1个不错的4星级宾馆,便准备住那。 1天,导游约了那家宾馆的老板,他来到经理室,流建义(那家宾馆的老板)请导游坐下,那个导游自我说明到:“我是内地的导游,姓天,名伟,这次我带领了1个旅游团到香港旅游,听说你的宾馆环境舒适,服务周到,我们想来你们宾馆住。” 刘建义先生连忙热情地说:“欢迎,欢迎,不知贵团一共有多少人?” “人嘛,还可以,是一个大团。” 刘建义先生心里一阵惊喜:1个大团,有是笔大生意! 作为个导游,天伟看出了刘建义先生的心思,他慢条斯理地说:“刘先生,如果你能算出我团人数,我们便住你宾馆。” “你请说吧。” “如果我把我的团平均分成4组多出1人,再把每小组平均分成4份,结果又多出1人,再把分底的4小组分成4份,结果又多出1人,当然也包括我,请问我们至少有多少人?” 刘建义为了接下这笔生意,马上开始了思考。他不愧是精明的人,很快算出了答案:“至少85人。” 天伟高兴的说:“一点不错,就是85人,请问老板是怎么算出来的?” “人数最少的情况下是最后1次4等分时,每人1份,由此推理得到:第3次之前有1*4+1=5(人),第2次分之前有5*4+1=21(人),第1次分之前有21*4+1=85(人)。” “好,我们就住这了。” “请问你们有男女各多少人?” “男55,女30。” “我们这现在只有11人,7人,5人的房间了,你们想怎么住?” “当然是先生安排了,但必须男女分开,也不能有空床位。” 经过苦思冥想,刘建义终于得出最佳方案:男的2间11人房,4间7人房,1间5人房;女的1间11人房,2间7人房,1间5人房。 天伟看了刘建义的安排后,非常满意,马上办了住宿手续。 一桩大生意做成了,虽然复杂了点,但刘建义心里还是十分高兴 一 代数知识是在算术知识的基础上发展起来的,其特点是用字母表示数,使数的概念及其运算 法则抽象化和公式化。初中一年级刚接触代数时,学生要经历由算术到代数的过渡,这里的 主要标志是由数过渡到字母表示数,这是在小学的数的概念的基础上更高一个层次上的抽 象。字母是代表数的,但它不代表某个具体的数,这种一般与特殊的关系正是初一学生学习 的困难所在。为了克服初一新生对这一转化而引发的学习障碍,教学中要特别重视“代数初步知识”这一 章的教学。它是承小学知识之前,启初中知识之后,开宗明义,搞好中小学数学衔接的重要 环节。数学中要把握全章主体内容的深度,从小学学过的用字母表示数的知识入手,尽量用 一些字母表示数的实例,自然而然地引出代数式的概念。再讲述如何列代数式表示常见的数 量关系,以及代数式的一些初步应用知识。要注意始终以小学所接触过的代数知识(小学没 有用“代数”的提法)为基础,对其进行较为系统的归纳与复习,并适当加强提高。使学生 感到升入初一就像在小学升级那样自然,从而减小升学感觉的负效应。初一代数的第一堂课,一般不讲课本知识,而是对学生初学代数给予一定的描述、指导。目 的是在总体上给学生一个认识,使其粗略了解中学数学的一些情况。如说明:
(1)数学的 特点。
(2)初中数学学习的特点。
(3)初中数学学习展望。
(4)中学数学各环节的学习 方法,包括预习、听讲、复习、作业和考核等。
(5)注意观察、记忆、想象、思维等智力 因素与数学学习的关系。
(6)动机、意志、性格、兴趣、情感等非智力因素与数学学习的 联系。二 学生对于数的概念,在小学数学中虽已有过两次扩展,一次是引进数0,一次是引进分数(指 正分数)。但学生对数的概念为什么需要扩展,体会不深。而到了初一要引进的新数——— 负数,与学生日常生活上的联系表面上看不很密切。他们习惯于“升高”、“下降”的这种说 法,而现在要把“下降5米”说成“升高负5米”是很不习惯的,为什么要这样说,一时更 不易理解。所以使学生认识引进负数的必要是初一数学中首先遇到的一个难点。我们在正式 引入负数这一概念前,先把小学数学中的数的知识作一次系统的整理,使学生注意到数的概 念是为解决实际问题的需要而逐渐发展的,也是由原有的数集与解决实际问题的矛盾而引发 新数集的扩展。即自然数集添进数0→扩大自然数集(非负整数集)添进正分数→算术数集 (非负有理数集)添进负整数、负分数→有理数集……。这样就为数系的再一次扩充作好准 备。正式引入负数概念时,可以这样处理,例:在小学对运进60吨与运出40吨,增产300千克与减产100千克的意义已很明确了,怎样用一个简单的数把它们的意义全面表示 出来呢?从而激发学生的求知欲。再让学生自己举例说明这种相反意义的量在生活中是经常 地接触到的,而这种量除了要用小学学过的算术数表示外,还要用一个语句来说明它们的相 反的意义。如果取一个量为基准即“0”,并规定其中一种意义的量为“正”的量,与之相 反意义的量就为“负”的量。用“+”表示正,用“-”表示负。这样,逐步引进正、负数 的概念,将会有助于学生体会引进新数的必要性。从而在心理产生认同,进而顺利地把数的 范畴从小学的算术数扩展到初一的有理数,使学...
初一数学论文
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。
如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。所以正确答案应该是:45*2.5=112.5(千米),112.5+18=130.5(千米),130.5*2=261(千米)和45*2.5=112.5(千米),112.5-18=94.5(千米),94.5*2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
初中数学小论文急用!
在国家教委制订的《九年义务教育全日制初级中学数学教学大纲(试用)》中,第一次使用了“数学素养”一词,成为全国中学数学教师的热门话题之一。
数学素养是人所必备的素养。人们在社会活动中,逐渐积累着对于数量关系和空间形式的认识,没有这种素养,人类就不会记数,不会排序,不会测量,不会分配,社会也就不可能发展,就没有现代社会的物质文明和精神文明。
数学素养是民族素质的重要组成部分:思想道德、文化科学、劳动技术和身体心理这四项素质的各个方位及其成分、因素,都要通过量化才能得以充分展示,并且变得更有标准、可操作、可测量、可评价。
数学图形是物质世界和人类文化相结合的一种完善形式。数学语言是全人类共同使用并可以传授给机器人的一种交流手段。数学是思维的体操,思维是数学灵魂,在运用数学思想、数学方法去思考和解决问题的过程中,培养着人的辩证唯物主义的世界观和严谨的科学态度。
数学素养的结构是多方位的,基本的有下列四个:1.知识技能素养。2.逻辑思维素养。3.运用数学素养。4.唯物辩证素养。
数学素养除了具有素质的一切特性以外,还具有以下特性:1.精确性。2.思想性。3.并发性。4.有用性。
我国建国以来,民族素质和数学素养都得到了很大的提高。中国学生的数学素养也已为世人所公认。
根据国际教育评估协会1992年的报告,在参加数学测试的21个国家或地区中,我国以总平均80分的成绩荣居榜首。此外,我国中学生在国际奥林匹克数学中连获冠军,有时竟囊括全部金牌,我们还拥有一批数学尖子。
提高学生的数学素养,需从以下几方面努力:(一)面向全体学生。(二)突出基本的数学思想和数学方法。(三)抓住培养思维能力这一数学教学的核心。(四)注重运用数学。
延伸阅读:
1小学数学中常见的数学思想方法有哪些《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》——小学数学教学中渗透数学思想方法思考与实践汇报:兆麟小学农丰小学兰陵小学今天由我们三人汇报的题目是:《领悟数学思想...
初中数学解题思想方法全部内容1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配...
小学数学教学中应渗透哪些数学思想方法数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要...
小学数学中常用的数学思想方法有哪些小学数学常用的教学方法有六种,分别是: 讲授法、谈话法、讨论法、练习法、演示法、动手操作法、启发法 1、讲授法 讲授法是教师运用口头语言向学生描绘情境、叙述事实、解释概...
如何在小学数学教学中渗透数学思想方法数学思想方法是解决数学问题所采用的方法。它是数学概念的建立、数学规律的归纳、数学知识的掌握和数学问题解决的基础。在人的数学研究中,最有用的不仅仅是数学知识,更重要的...
小学数学思想方法有哪些数学广角所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现...
初中数学思想方法有哪些中学数学中的数学思想方法 数学思想方法,从接受的难易程度可分为三个层次: 一是基本具体的数学 方法,如配方法、换元法、待定系数法、归纳法与演绎法等;二是科学的逻辑方 法,如观...
初中数学思想方法主要有哪些'2.分类讨论思想所谓分类讨论是指对于复杂的对象,为了研究的需要.根据对象本质属性的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而认识整体的性质的思想方...
如何培养小学生数学思想和数学方法如何培养小学生数学思想和数学方法,小学数学有哪些知识观:如何让学生在学会知识的同时,又学会数学思想方法,一直是众多教师探究的重要课题。笔者也欣然参与其中进行了大量的有益...