范文无忧网公文文书入党入团

中学数学有哪些数学思想方法

10月11日 编辑 fanwen51.com

[1小学数学中常见的数学思想方法有哪些]《领悟数学思想方法,让课堂绽放魅力,让学生展现风采》——小学数学教学中渗透数学思想方法思考与实践汇报:兆麟小学农丰小学兰陵小学今天由我们三人汇报的题目是:《领悟数学思想...+阅读

中学数学有哪些数学思想方法

1.函数思想: 把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。 2.数形结合思想: 把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。例如根号((a-1)^2+(b-1)^2)+根号(a^2+(b-1)^2)+根号((a-1)^2+b^2)+根号(a^2+b^2)的最小值,就可以把它放在坐标系中,把它转化成一个点到(0,1)、(1,0)、(0,0)、(1,1)四点的距离,就可以出它的最小值。 3.分类讨论思想: 当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。比如解不等式|a-1|>4的时候,就要讨论a的取值情况。 4.方程思想: 当一个问题可能与某个方程建立关联时,可以构造方程并对方程的性质进行研究以解决这个问题。

例如证明柯西不等式的时候,就可以把柯西不等式转化成一个二次方程的判别式

中学数学中几种常用的数学思想方法

山西省朔州市平鲁区李林中学 刘娟娟 数学是研究现实世界中数量关系和空间形成的一门科学。随着科学技术的不断发展,数学也从原始形态的数量关系向抽象化的数量关系发展。在发展的过程中,不仅建立了严密的理论体系,而且形成了一整套的数学思想方法。本文结合有关的例题,对数学中常用的几种思想方法作一番探讨。一、数形结合的思想方法 数形结合思想方法就是把抽象的数学符号语言和直观的几何图形联系起来,把抽象思维与形象思维相结合,通过“以形助数” 、“以数解形” ,使抽象问题具体化,复杂问题简单化,从而达到解答目的。 数形结合应用甚广,不仅在解选择题、填空题中显示它的优越性,而且在解某些抽象数学问题时也起到事半功倍的效果。“以数解形” 是解析几何的主线,“以形助数” 是数形结合的研究重点。

如何“以数转形”是数形结合的关键,图解法是数形结合的具体体现。数形结合是近年中、高考重点考查的思想方法之一。下面我们结合下面的例子作简单的分析: 例1. 已知 0

延伸阅读:

小学数学思想方法有哪些1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。对应是人们对两个集合因素之间的联系的一种思想...

小学数学中常用的数学思想方法有哪些小学数学常用的教学方法有六种,分别是: 讲授法、谈话法、讨论法、练习法、演示法、动手操作法、启发法 1、讲授法 讲授法是教师运用口头语言向学生描绘情境、叙述事实、解释概...

小学数学思想方法有哪些数学广角所谓数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现...

初中数学思想方法有哪些中学数学中的数学思想方法 数学思想方法,从接受的难易程度可分为三个层次: 一是基本具体的数学 方法,如配方法、换元法、待定系数法、归纳法与演绎法等;二是科学的逻辑方 法,如观...

数学方法和思想有哪些1.函数思想: 把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法。 2.数形结合思想: 把代数和几何相结合,例如对几何问题用代数...

初中数学思想方法主要有哪些'2.分类讨论思想所谓分类讨论是指对于复杂的对象,为了研究的需要.根据对象本质属性的相同点和差异性,将对象区分为不同种类,通过研究各类对象的性质,从而认识整体的性质的思想方...

高中数学有哪些重要的思想方法数学四大思想:函数与方程、转化与化归、分类讨论、数形结合;函数与方程 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运...

高中数学有哪些思想方法全面一点谢拉1、函数与方程思想。函数与方程是高中数学的重要组成部分,是高中代数的主线,它体系完整、内容丰富、应用广泛。在历年高考试题中,对函数与方程及其思想、方法的考查,遍布于代数...

小学生数学思想有哪些中学生数学思想有哪些小学生数学思想有哪些中学生数学思想有哪些,关于思想方法方面的初一数学小论文:(1)界定范围:小学生基本数学思想(2)界定对象:1—6年级学生(3)界定内容:①数学思想,是指现实世界的空间...

推荐阅读
图文推荐
栏目列表