[初中数学知识点总结]一、基本知识 一、数与代数A、数与式: 1、有理数有理数:①整数正整数/0/负整数②分数正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长...+阅读
数学整式的知识点总结
第二章 代数式 ★重点★代数式的有关概念及性质,代数式的运算 ☆内容提要☆一、 重要概念 分类: 1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独 的一个数或字母也是代数式。 整式和分式统称为有理式。 2.整式和分式 含有加、减、乘、除、乘方运算的代数式叫做有理式。 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 有除法运算并且除式中含有字母的有理式叫做分式。 3.单项式与多项式 没有加减运算的整式叫做单项式。(数字与字母的积—包括单独的一个数或字母) 几个单项式的和,叫做多项式。 说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。如, =x, =│x│等。
整式的知识点回顾急
单项式和多项式统称为整式。 代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。
整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。 加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。整式和同类项 1.单项式
(1)单项式的概念:数与字母的积这样的代数式叫做单项式,单独一个数或一个字母也是单项式。 注意:数与字母之间是乘积关系。
(2)单项式的系数:单项式中的字母因数叫做单项式的系数。 如果一个单项式,只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为—1。 (3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。 2.多项式
(1)多项式的概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。多项式中的符号,看作各项的性质符号。
(2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
(3)多项式的排列: 1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。 2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。 由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。 为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。 在做多项式的排列的题时注意:
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意: a.先确认按照哪个字母的指数来排列。 b.确定按这个字母向里排列,还是生里排列。
(3)整式: 单项式和多项式统称为整式。
(4)同类项的概念: 所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。 掌握同类项的概念时注意: 1.判断几个单项式或项,是否是同类项,就要掌握两个条件: ①所含字母相同。 ②相同字母的次数也相同。 2.同类项与系数无关,与字母排列的顺序也无关。 3.几个常数项也是同类项。
(5)合并同类项: 1.合并同类项的概念: 把多项式中的同类项合并成一项叫做合并同类项。 2.合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 3.合并同类项步骤: ⑴.准确的找出同类项。 ⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 ⑶.写出合并后的结果。 在掌握合并同类项时注意: 1.如果两个同类项的系数互为相反数,合并同类项后,结果为0. 2.不要漏掉不能合并的项。 3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。 合并同类项的关键:正确判断同类项。 整式和整式的乘法 整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。 加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。 同底数幂的乘法法则:同底数幂相乘,底数不变指数相加。 幂的乘方法则:幂的乘方,底数不变,指数相乘。 积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。 单项式与单项式相乘有以下法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。 单项式与多项式相乘有以下法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 多项式与多项式相乘有下面的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 平方差公式:两数和与这两数差的积等于这两数的平方差。 完全平方公式:两数和的平方,等于这两数的平方和,加上这两数积的2倍。 两数差的平方,等于这两数的平方和,减去这两积的2倍。 同底数幂相除,底数不变,指数相减。
初中7年级整式的知识点是哪些
一、整式的有关概念
1、单项式:数与字母乘积,这样的代数式叫单项式。单独的一个数或字母也是单项式。
2、单项式的系数:单项式中的数字因数。
3、单项式的次数:单项式中所有的字母的指数和。
4、多项式:几个单项式的和叫多项式。
5、多项式的项及次数:组成多项式中的单项式叫多项式的项,多项式中次数最高项的次数叫多项式的次数。特别注意,多项式的次数不是组成多项式的所有字母指数和!!!
6、整式:单项式与多项式统称整式。(分母含有字母的代数式不是整式)
二、整式的运算
(一)整式的加减法
基本步骤:去括号,合并同类项。
(二)整式的乘法
1、同底数的幂相乘
法则:同底数的幂相乘,底数不变,指数相加。
数学符号表示: (其中m、n为正整数)
2、幂的乘方
法则:幂的乘方,底数不变,指数相乘。
数学符号表示: (其中m、n为正整数)
3、积的乘方
法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)
数学符号表示: (其中n为正整数)
4、同底数的幂相除
法则:同底数的幂相除,底数不变,指数相减。
数学符号表示: (其中m、n为正整数)
,
5、单项式乘以单项式
法则:单项式乘以单项式,把它们的系数、相同字母的幂分别相乘,其余的字母则连同它的指数不变,作为积的一个因式。
6、单项式乘以多项式
法则:单项式乘以多项式,就是根据分配律用单项式的去乘多项式的每一项,再把所得的积相加。
7、多项式乘以多项式
法则:多项式乘以多项式,先用一个多项式的每一项去乘另一个多项式的每一项,再把所得的积相加。
8、平方差公式
法则:两数的各乘以这两数的差,等于这两数的平方差。
数学符号表示: (其中a、b既可以是数,也可以是代数式)
说明:平方差公式是根据多项式乘以多项式得到的,它是两个数的和与同样的两个数的差的积的形式。
9、完全平方公式
法则:两数和(或差)的平方,等于这两数的平方和再加上(或减去)这两数积的2倍。
数学符号表示:
(二)整式的除法
1、单项式除以单项式
法则:单项式除以单项式,把它们的系数、相同字母的幂分别相除后,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
2、多项式除以单项式
法则:多项式除以单项式,就是多项式的每一项去除以单项式,再把所得的商相加
整式的归纳
整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。单项式和多项式统称为整式。
2x/3是单项式。
0.4X+3 是多项式。
x/y不是整式,是分式。也是属于分数的一部分形式。
代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。(含有代数式字母有除法运算的,那么式子叫做分式fraction.).单项式和多项式统称为整式。
代数式:由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。例如:ax+2b,-2/3,b^2/26,√a+√2等。 注意: 1、不包括等于号(=、≡)、不等号(≠、≤、≥、、≮、≯)、约等号≈。 2、可以有绝对值。例如:|x|,|-2.25| 等。
整式不包括开方,分母是字母的数。
整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。
加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂.数与字母的乘积叫做单项式。几个单项式的和是多项式。单项式与多项式统称为整式。单高项的次数叫做多项式的次数。多项式可以按降幂和升幂排列,(1)升幂:把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列;(2)降幂:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列。
幂的七种运算:(1)同底数幂的乘法:底数不变,指数相加。(2)同底数幂的乘方:底数不变,指数相乘。(3)积的乘方
延伸阅读:
求初中数学知识点总结初中数学知识点总结 一、基本知识 一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取...
小学数学知识点总结全部小学数学一年级(上):1. 数一数2. 比一比 (多少,长短,高矮)3. 1-5的认识与加减法(读写,顺序,大小比较)4. 认识图形和物体 (标准图形的直观认识)5. 分类6. 6-10的认识和加减 (读写,顺序,大小比...
高中数学知识点总结复数是高中代数的重要内容,在高考试题中约占8%-10%,一般的出一道基础题和一道中档题,经常与三角、解析几何、方程、不等式等知识综合.本章主要内容是复数的概念,复数的代数、几...
高一数学知识点总结*这是高中数学的全部公式* 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=se...
初二数学知识点总结上册的(一)运用公式法: 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘...
高一数学必修4的知识点的总结公式分类 同角三角函数的基本关系 tan α=sin α/cos α 平常针对不同条件的常用的两个公式 sin^2 α+cos^2 α=1 tan α *tan α 的邻角=1 锐角三角函数公式 正弦: sin α=...
数学函数知识点总结展开全部数学函数知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却...
初二上册整式知识点总结?第二章 代数式 ★重点★代数式的有关概念及性质,代数式的运算 ☆内容提要☆ 一、 重要概念 分类: 1.代数式与有理式 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。...
初中数学线的知识点总结过两点有且只有一条直线 过一点有且只有一条直线和已知直线垂直 直线外一点与直线上各点连接的所有线段中,垂线段最短 平行公理 经过直线外一点,有且只有一条直线与这条直线平...