范文无忧网计划总结工作总结

有关二次函数的所有知识点

03月21日 编辑 fanwen51.com

[二次函数图像和性质] 对称轴x=h顶点坐标(x,h)(两个都是) A>0 左边 Y随X的增大而减小 右边Y随X的增大而增大 x=h时有最小值 A左边 Y随X的增大而增大 右边Y随X的增大而减小 x=h时有最大值 不知道你看...+阅读

有关二次函数的所有知识点

函数单元测试题1.已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 。 2.若函数y= -2xm+2是正比例函数,则m的值是 。 3.一次函数y= -2x+4的图象与x轴交点坐标是 ,与y轴交点坐标是 ,图象与坐标轴所围成的三角形面积是 。 4.如图:三个正比例函数的图像分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是 >>。 5. 某种储蓄的月利率为0.15%,现存入1000元,则本息和y(元)与所存月数x之间的函数关系式是 。 6.已知一次函数y=-x-(a-2),当a_____时,函数的图象与y轴的交点在x轴的下方。 7.写出同时具备下列两个条件的一次函数表达式(写出一个即可) 。

(1)y随着x的增大而减小。

(2)图象经过点(1,-3) 8.某商店出售一种瓜子,其售价y(元)与瓜子质量x(千克)之间的关系如下表 质量x(千克) 1 2 3 4 …… 售价y(元) 3.60+0.20 7.20+0.20 10.80+0.20 14.40+0.2 …… 由上表得y与x之间的关系式是 。 9.某人用充值50元的IC卡从A地向B地打长途电话,按通话时间收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若此人第一次通话t分钟(3≤t≤45),则IC卡上所余的费用y(元)与t(分)之间的关系式是 。 10.过点P(0,4),且与直线y=x-3平行的直线解析式为: ;将此直线沿y轴正方向平移2个单位后得到的直线解析式为: 。 *11.如图,已知A地在B地正南方3千米处,甲乙两人同时分别从A、B两地向正北方向匀速直行,他们与A地的距离S(千米)与所行的时间t(小时)之间的函数关系图象如图所示的AC和BD给出,当他们行走3小时后,他们之间的距离为 千米. 二.选择题(每题3分,共24分) 11.下列函数

(1)y=πx (2)y=2x-1 (3) (4)y=2-1-3x (5)y=x2-1中,是一次函数的有( ) (A)4个 (B)3个 (C)2个 (D)1个 12.已知点(-4,y1),(2,y2)都在直线上,则y

1、 y2大小关系是( ) (A)y1>y2 (B)y1=y2 (C)y10,b>0 (B)k>0,b0 (D)k 22.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年

9、10月份的用水量和所交水费如下表所示: 设某户每月用水量x(立方米),应交水费y(元)

(1)求a、c的值。

(2)当x≤6,x≥6时,分别写出y于x的函数关系式。

(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元? 23.附加题 已知一次函数y=kx+b的图象经过点M(-1,1)及点N(0,2),设该图象与x轴交于点A,与y轴交于点B,问:在x轴上是否存在点P,使ABP为等腰三角形?若存在,把符合条件的点P的坐标都求出来;若不存在,请说明理由。

二次函数的知识点有哪些

二次函数的知识点

1.二次函数的定义:y=ax^2+bx+c(a≠0)

2.图像和性质:

二次函数y=ax^2(a>0)的图像和性质;

二次函数y=ax^2(a<0)的图像和性质;

二次函数y=ax^2+bx+c(a>0)的图像和性质;

二次函数y=ax^2+bx+c(a<0)的图像和性质.

图像:列对应值描点作图法;

根据对称性作图法.

图像的开口方向,顶点坐标,与坐标轴的交点坐标.

性质:对称性,对称轴及方程;

单调性,单调区间;

最大值,最小值.

3.二次函数y=ax^2+bx+c(a≠0)三种形式及应用:

一般式:y=ax^2+bx+c(a≠0)

顶点式:y=a(x-r)^2+h

两点式:y=a(x-x1)(x-x2)

4.二次函数y=ax^2+bx+c(a≠0)的平移变换

5.常用方法:

配方法.

待定系数法.

........

二次函数的基本知识

我们把形如y=ax^2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数(quadratic function),称a为二次项系数,b为一次项系数,c为常数项。一般的,形如y=ax^2+bx+c(a≠0)的函数叫二次函数。自变量(通常为x)和因变量(通常为y)。右边是整式,且自变量的最高次数是2。 注意,“变量”不同于“未知数”,不能说“二次函数是指未知数的最高次数为二次的多项式函数”。未知数只是一个数(具体值未知,但是只取一个值),变量可在一定范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别。

二次函数的解法

二次函数的通式是 y= ax^2+bx+c如果知道三个点 将三个点的坐标代入也就是说三个方程解三个未知数 如题方程一8=a2+b2+c 化简 8=c 也就是说c就是函数与Y轴的交点。 方程二7=a*36+b*6+c 化简 7=36a+6b+c。 方程三7=a*(-6)2+b*(-6)+c化简 7=36a-6b+c。 解出a,b,c 就可以了 。 上边这种是老老实实的解法 。 对(6,7)(-6,7)这两个坐标 可以求出一个对称轴也就是X=0 。 通过对称轴公式x=-b/2a 也可以算 。 如果知道过x轴的两个坐标(y=0的两个坐标的值叫做这个方程的两个根)也可以用对称轴公式x=-b/2a算 。 或者使用韦达定理一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac≥0)中 。 设两个根为X1和X2 则X1+X2= -b/a X1·X2=c/a 已知顶点(1,2)和另一任意点(3,10),设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2

一般式

y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b^2)/4a)

顶点式

y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax^2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式。

交点式

y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点A(x1,0)和 B(x2,0)的抛物线,即b^2-4ac≥0] 由一般式变为交点式的步骤:

二次函数(16张) ∵X1+x2=-b/a x1·x2=c/a ∴y=ax^2+bx+c =a(x^2+b/ax+c/a) =a[﹙x^2-(x1+x2)x+x1x2]=a(x-x1)(x-x2) 重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;a<0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。

延伸阅读:

所有函数的总结一、函数的概念与分类 [函数与反函数] 设D是给定的一个数集.若有两个变量x和y,当变量x在D中取某个特定值时,变量y依确定的关系f也有一个确定的值,则称y是x的函数,f称为D上的一个...

二次函数的图象和性质二次函数的图象是一条抛物线。 1、抛物线当a>0时,向上无限延伸,同时a>0,抛物线开口向上 抛物线当a<0时,向上无限延伸,同时当a<0时,抛物线开 口向下。 2、抛物线以y轴为对称轴,由于y...

初三二次函数知识点总结鄂、。。貌似图像啥的发不出来撒、。。要是亲很想要的话在找我要把、。。嘻嘻、。。二次函数知识点总结二次函数知识点: 1.二次函数的概念:一般地,形如(是常数,)的函数,叫做二次函...

拜托啊所有函数知识的总结一次函数: 正比例:在一次函数中,y=kx(k≠0)为正比例函数 图像:当k〉0时,y随x的值增大而增大, 当k〈0时,y随x的值增大而减小。 二次函数知识点总结 1.定义:一般地,如果 是常数, ,那么 叫...

初中所有函数知识点总结谁有正比例函数的概念 一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数。 正比例函数属于一次函数,但一次函数却不一定是正比例...

求高中有关函数知识点的总结二.函数 1.函数的定义:对于任何一个x都有唯一一个确定的y与之对应。 2.映射:一个原象只有唯一一个象与之对应;象不一定都有原象 3.集合转变成区间: 4.函数的表示方法:解析式法;列...

初中九年级二次函数知识点总结初中九年级二次函数知识点总结,初三二次函数知识点总结:二次函数 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开...

初三二次函数知识梳理初三二次函数知识梳理,谁能告诉我一些有关中学二次函数知识点:一般式Y=ax2+bx+c(a不等于0)a的作用,决定二次函数开口方向和开口大小b的作用,和a一起决定二次函数的对称轴c的作...

所有函数知识点归纳总结所有函数知识点归纳总结,拜托啊所有函数知识的总结:函数及其图像 一、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 坐标平面被x轴和y...

推荐阅读
图文推荐
栏目列表