[高一数学集合知识概念总结结构图]集合 1.集合的概念与表示方法 A.概念~~~~ B.表示方法 a.列举法 b.描述法 c.图示法 2.集合间的关系 A.包含---子集与真子集 B.相等 3.集合的运算 A.交集 B.并集 C.补集 4.集...+阅读
其实这一章主要是理解,考点并不多,因为在以后的运用中这些概念自然会熟悉,希望你可以在高一打好数学基础。概要:第一章 集合与函数概念
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说 ...第一章 集合与函数概念
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋大西洋印度洋北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员}B={12345} 2.集合的表示方法:列举法与描述法。 注意啊:常用数集及其记法: 非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a?A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。 ①语言描述法:例:{不是直角三角形的三角形} ②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}
4、集合的分类: 1.有限集 含有有限个元素的集合 2.无限集 含有无限个元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系 1.“包含”关系子集 注意: 有两种可能
(1)A是B的一部分,;
(2)A与B是同一集合。 反之: 集合A不包含于集合B或集合B不包含集合A记作A B或B A 2.“相等”关系(5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-11} “元素相同” 结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B ① 任何一个集合是它本身的子集。A?A ②真子集:如果A?B且A? B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 A?B B?C 那么 A?C ④ 如果A?B 同时 B?A 那么A=B 3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
三、集合的运算 1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合叫做AB的交集. 记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集与并集的性质:A∩A = A A∩φ= φ A∩B = B∩A,A∪A = A A∪φ= A A∪B = B∪A.
4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作: CSA 即 CSA ={x ? x?S且 x?A} (2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。
(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U
二、函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. (PS:我复制的,希望对你有用,温馨提示:记得以后先一下,或是搜索一下别人的答案,还有分不要太高,万一分用完你怎么办呢) (PS的PS:集合和函数不难,多看例题,主要是套公式,题型都差不多,这是过来人的意见,选择性地采纳吧) 祝楼主能学好函数和集合!!!
延伸阅读:
高一数学知识点总结*这是高中数学的全部公式* 三角函数公式表 同角三角函数的基本关系式 倒数关系: 商的关系: 平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=se...
函数奇偶性和周期性Ⅰ.f(x+2)=-f(x)=f(-x)①,所以f[(-1-x)+2]=f[-(-1-x)],即f(1-x)=f(1+x)②,实际根据①可直接看出②(即对称轴为x=(x+2-x)/2=1); Ⅱ.同理f(x)=f(2-x),所以f(x)=f(-x-2)=f[2-(-x-2)]...
高一数学必修1函数概念知识总结1、指数函数 ( 且 ),其中 是自变量, 叫做底数,定义域是R 2、若 ,则 叫做以 为底 的对数。记作: ( , ) 其中, 叫做对数的底数, 叫做对数的真数。 注:指数式与对数式的互化公式: 3、对数的性...
高一数学必修4函数知识点总结§1.2. 1、函数的概念 1、 设A、B是非空的数集,如果按照某种确定的对应关系,使对于集合A中的任意一个数,在集合B中都有惟一确定的数和它对应,那么就称为集合A到集合B的一个函数,...
高一必修一第三章函数的应用知识点总结一.二次函数的最值: 1.如果自变量的取值是全体实数,那么二次函数在图象顶点处取到最大值(或最小值)。 这时有两种求最值:一种是利用顶点坐标公式,一种是利用配方计算。 二.二次函...
求高中数学函数总结幂函数,指数函数,对数函数,三角函数,反三角函数…… 满意请采纳 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? A表示函数y=lgx...
求高一数学指数函数及幂函数的性质的总结幂函数不经过第三象限, 如果该函数的指数的分子n是偶数,而分母m是任意整数, 则y>0,图像在第一;二象限.这时(-1)^p的指数p的奇偶性无关. 例如:y=x^(2/3); y=x^(-2/3)(x0); y=x^(2/4),...
数学函数知识点总结展开全部数学函数知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却...
求高人对高中函数做个归结性总结第一部分 集合 (1)含n个元素的集合的子集数为2^n,真子集数为2^n-1;非空真子集的数为2^n-2;(2) 注意:讨论的时候不要遗忘了 的情况。 (3) 第二部分 函数与导数1.映射:注意 ①第一个集...