[一次函数重点知识]定义:如果y=kx+b(k、b是常数且k不等于0),那么y叫做x的一次函数。二、一次函数的两个特征:(1)自变量x的指数为1 ;(2)k不等于0 ;(更特别的是:当b=0时,一次函数y=kx+b变为y=kx 这里k是常...+阅读
一次函数知识体系
函数的基本概念:一般地,在某一变化过程中,有两个变量x和y,如果给定一个X值,有唯一确定的Y值与之对应,那么我们称Y是X的函数(function).
定义与定义式
自变量x和因变量y有如下关系:
y=kx+b (k为任意不为零实数,b为任意实数)
则此时称y是x的一次函数。
特别的,当b=0时,y是x的正比例函数。
即:y=kx (k为任意不为零实数)
一次函数的性质
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b (k为任意不为零的实数 b取任何实数)
2.当x=0时,b为函数在y轴上的截距。
一次函数的图像及性质
1.作法与图形:通过如下3个步骤
(1)列表[一般取两个点,根据两点确定一条直线];
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.函数不是数,它是指某一变量过程中两个变量之间的关系。
4.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k当b>0时,直线必通过一、二象限;
当b=0时,直线必通过原点。
当b
y=kx+b时:
当 k>0,b>0, 这时此函数的图象经过一,二,三象限。
当 k>0,b当 k当 k0, 这时此函数的图象经过一,二,四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k4、特殊位置关系
当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等
当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)
确定一次函数的表达式
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
一次函数在生活中的应用
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
常用公式(不全,希望有人补充)
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)
5.求两一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
求一次函数的全部知识点
展开全部
一. 变量与常量 1)在某一个变化过程中,取同一数值的量叫做常量。在某一个变化过程中,取不同的数值的量叫做变量。 2)在某一个变化过程中,有两个变量:x和y,当x取每一个值时,y对应地取唯一的一个值,此时,y叫做x的函数,也叫做“应变量”,x叫做“自变量”。 (函数在等式左面,右面式子中含有自变量。) 3)函数关系式 用来表示函数关系的式子就叫做“函数关系式”,也叫做函数的解析式。 特点:1.是等式。 2.左侧是函数(因变量),右侧是自变量的代数式。 4)函数自变量的取值范围 1.式子需有意义。 2.表示实际问题实有实际意义。 3.函数值即自变量对应函数的值。 5)同一个函数: 自变量和因变量的取值范围分别完全相同的两个函数叫做“同一个函数”。 二.函数的图像 1)绘图步骤: 1.列表 2.描点 3.连线 4.注明关系式 2)如果一个点在某个函数的图像上,那么这一点的横、纵坐标一定满足这个函数的解析式,反之则不在。 三.正比例函数 1)一般地,形如:y=kx(k为常数且k≠0)叫做“正比例函数”,其中k叫做比例系数。 2)为什么k≠0? 因为如果k=0,则不论x为何值,y都不变,是常量。不符合“函数有两个变量”。所以k=0不成立。 3)函数的增减性 当k>0时,图像经过第
一、第三象限,随着x的增大,y相应增大。 当k0时,y随着x的增大而增大。 当k0,b>0时,函数图像经过第
一、
二、三象限。 2.当k>0,b=0时,函数图像经过第
一、三象限,及原点 3.当k>0,b0时,函数图像经过第
一、
二、四象限。 5.当k
一次函数有哪些知识点
去文库,查看完整内容>
内容来自用户:你说的对
知识点一、平面直角坐标系
1,平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点,不属于任何象限。坐标原点既属于x轴,也属于y轴。
2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。坐标平面内的点与有序实数对存在一一对应关系。
知识点二、不同位置的点的坐标的特征
1、各象限内点
点P(x,y)在第二象限点P(x,y)在第一象限
点P(x,y)在第三象限点P(x,y)在第四象限
2、坐标轴上的点
点P(x,y)在x轴上,x为任意实数
点P(x,y)在y轴上,y为任意实数
点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)
3、两条坐标轴夹角平分线上的点74
延伸阅读:
一次函数有哪些知识点去文库,查看完整内容> 内容来自用户:你说的对 知识点一、平面直角坐标系 1,平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数...
求一次函数的全部知识点展开全部 一. 变量与常量 1)在某一个变化过程中,取同一数值的量叫做常量。在某一个变化过程中,取不同的数值的量叫做变量。 2)在某一个变化过程中,有两个变量:x和y,当x取每一个值时...
一次函数知识点1、正比例函数 一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数. 2、正比例函数图象和性质 一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1...
求一次函数的知识点“函数”的概念是17世纪时从对各种运动问题的研究和对机械运动规律的考察中形成的。“函数”这个词用作数学术语最早是德国数学家莱布尼茨于1692年在考虑由次切线的变化来确...
项目管理知识体系的过程PMBOK把项目管理过程分为五类: 1) 启动。成立项目组开始项目或进入项目的新阶段。启动是一种认可过程,用来正式认可一个新项目或新阶段的存在。 2) 计划。定义和评估项目目标,选...
怎样绘制八下数学一次函数知识树1.使学生会计算100以内的两位数加。 4.结合教学使学生受到爱学习: 1.使学生能辨认从不同位置观察到的简单物体的形状、操作: 第五单元观察物体 教学目标第一单元长度单位。 2....
如何真正建立你的知识体系如何真正建立你的知识体系,如何建立自己的知识体系:每天早上起床都要看一遍福布斯富翁排行榜,如果上面没有我的名字,我就去上班。这个时候,福布斯富翁排行榜是目标。我们在学习一...
怎么样建立自己的知识体系怎么样建立自己的知识体系,如何构建个人知识体系:第一,一个完善的个人知识体系因该是系统的,一个完善的个人知识体系应该是一个螺线上升的循环圈,围绕自己的起点,扩展自己的知识面...
如何建立知识管理体系如何建立知识管理体系,如何构建起自己的知识体系请有经验的过来人指点:怎样建立知识管理系统 知识运行机制主要指促进知识创新、共享与应用高效有序运转的机制。包括:微弱市场...