[高中数学必修五数列问题](1) n>=2时 S(n-1)=2a(n-1)+1 an=Sn-S(n-1)=2an-2a(n-1) 得 an=2a(n-1) =>;数列是等比数列 ,且公比为2 n=1时 a1=2a1+1 a1=-1 an=(-1)*2^n=-2^(n-1) (2) 1.若 an=0 是满足题...+阅读
(1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。
(2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。
(3)数列的应用问题,其中主要是以增长率问题为主。
试题的难度有三个层次,小题多以基础题为主,解答题多以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题,难度较大。
接下来为大家介绍下高中数列解题中,经常会用到的几种方法,大家可以按照这个解题思路来回答数列相关的问题,掌握了这几点并融会贯通,你会发现,数列其实并不难。
(1)函数的思想方法
数列本身就是一个特殊的函数,而且是离散的函数,因此在解题过程中,尤其在遇到等差数列与等比数列这两类特殊的数列时,可以将它们看成一个函数,进而运用函数的性质和特点来解决问题。
(2)方程的思想方法
数列这一章涉及了多个关于首项、末项、项数、公差、公比、第n项和前n项和这些量的数学公式,而公式本身就是一个等式,因此,在求这些数学量的过程中,可将它们看成相应的已知量和未知数,通过公式建立关于求未知量的方程,可以使解题变得清晰、明了,而且简化了解题过程。
(3)不完全归纳法
不完全归纳法不但可以培养学生的数学直观,而且可以帮助学生有效的解决问题,在等差数列以及等比数列通项公式推导的过程就用到了不完全归纳法。
(4)倒序相加法
等差数列前n项和公式的推导过程中,就根据等差数列的特点,很好的应用了倒序相加法,而且在这一章的很多问题都直接或间接地用到了这种方法。
(5)错位相减法
错位相减法是另一类数列求和的方法,它主要应用于求和的项之间通过一定的变形可以相互转化,并且是多个数求和的问题。等比数列的前n项和公式的推导就用到了这种思想方法。
延伸阅读:
高一数学必修5关于数列1)n=1时, a1=S1=1+1=2 n>1时, Sn=n²+1① S(n-1)=(n-1)²+1=n²-2n+2② ①-②得 Sn-S(n-1)=2n-1, 即an=2n-1 a(n+1)-an=2(n+1)-1-(2n-1)=2,是常数 a2-a1=(2*2-1)-2=1≠2 ∴{an}...
高一必修5数学数列a16+a17+a18=3a17=-36 3(a1+16d)=a1+8d=36 a1=-60 d=3 an=3n-60 Sn=(-60+3n-63)n/2=3n^2/2-123n/2=(3/2)(n-20.5)²-5043/8 所以n=20和21时,Sn有最小值=-630 an=3n-63 所以1<...
会呼吸的建筑阅读答题思路总结题型1.A(说明:本题2分。) 2.第②段与第③④⑤段是总分关系,第③④⑤段与第②段相关内容具有按顺序对应的关系。(说明:本题4分。) 3.把客厅电灯、浴室加热器等比喻成“葵花子”,体现了说...
数列的解题技巧有哪些以下纯属个人观点.如有雷同,不甚荣幸 1,数列其实就是找规律,看一个数列,首先要看到数列本身的变化规律,并将复杂数列通过,对个体的分解,或是对多项的合并,又或是通其他可行的方法,使...
有关数列的解题方法数列的求和 求数列的前n项和Sn,重点应掌握以下几种方法: 1.倒序相加法:如果一个数列{an},与首末两项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,...
数学数列解题方法公式法、累加法、累乘法、待定系数法、对数变换法、迭代法、数学归纳法、换元法、不动点法、特征根的方法等等。 类型一 归纳—猜想—证明 由数列的递推公式可写出数列的前...
数列的解题技巧1、等差数列的通项公式是关于n的一次函数,(定义域为正整数集),一次项的系数为公差;等差数列的前n项和公式是关于n的二次函数,二次项系数为公差的一半,常数项为0. 证明某数列是等差(...
数列解题思路及技巧理科成绩都是题堆出来的,人们常说的题海战术,但是我指的不是疯狂的做题,多做题是必要的,要做多种类型的题,把类型题做全,而不是大量做题。建议你请一位负责任的家教,选择一本好的练...
谁能总结一套高中数列全部知识点和方法谢谢!二、等差数列的性质: 1若等差等差数列的前项和为,在时,有最大值. 如何确定使取最大值时的值,有两种方法:一是求使,成立的值;二是由利用二次函数的性质求的值. 2数列的项数为2,则; 3若...