范文无忧网范文学习范文大全

高中文科数学公式

04月06日 编辑 fanwen51.com

[初中的数学公式]数学公式,是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。...+阅读

高中文科数学公式

1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(π2-a)=cos(a) cos(π2-a)=sin(a) sin(π2+a)=cos(a) cos(π2+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)−sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.二倍角公式 sin(2a)=2sin(a)cos(b) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 5.半角公式 sin2(a2)=1-cos(a)2 cos2(a2)=1+cos(a)2 tan(a2)=1-cos(a)sin(a)=sina1+cos(a) 6.万能公式 sin(a)=2tan(a2)1+tan2(a2) cos(a)=1-tan2(a2)1+tan2(a2) tan(a)=2tan(a2)1-tan2(a2) 7.其它公式(推导出来的 ) a⋅sin(a)+b⋅cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba a⋅sin(a)+b⋅cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab 1+sin(a)=(sin(a2)+cos(a2))2 1-sin(a)=(sin(a2)-cos(a2))2 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱 二维图形 下面是一些二维图形的周长与面积公式。

圆: 半径= r 直径d=2r 圆周长= 2πr =πd 面积=πr2 (π=3.1415926…….) 椭圆: 面积=πab a与b分别代表短轴与长轴的一半。 矩形: 面积= ab 周长= 2a+2b 平行四边形(parallelogram): 面积= bh = ab sinα 周长= 2a+2b 梯形: 面积= 1/2h (a+b) 周长= a+b+h (secα+secβ) 正n边形: 面积= 1/2nb2 cot (180°/n) 周长= nb 四边形(i): 面积= 1/2ab sinα 四边形(ii): 面积= 1/2 (h1+h2) b+ah1+ch2 三维图形 以下是三维立体的体积与表面积(包含底部)公式。 球体: 体积= 4/3πr3 表面积= 4πr2 方体: 体积= abc 表面积= 2(ab+ac+bc) 圆柱体: 体积= πr2h 表面积= 2πrh+2πr2 圆锥体: 体积= 1/3πr2h 表面积=πr√r2+h2 +πr2 三角锥体: 若底面积为A, 体积= 1/3Ah 平截头体(frustum): 体积= 1/3πh (a2+ab+b2) 表面积=π(a+b)c+πa2+πb2 椭球: 体积= 4/3πabc 环面(torus): 体积= 1/4π2 (a+b) (b–a) 2表面积=π2 (b2–a2)

高考文科数学必背公式

一、高中数学诱导公式全集: 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα (k∈Z) cos(2kπ+α)=cosα (k∈Z) tan(2kπ+α)=tanα (k∈Z) cot(2kπ+α)=cotα (k∈Z) 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。

诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于π/2*k ±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。

当α是锐角时,2π-α∈(270°,360°),sin(2π-α) 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 # 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三内切,四余弦 # 还有一种按照函数类型分象限定正负: 函数类型 第一象限 第二象限 第三象限 第四象限 正弦 ...........+............+............—............—........ 余弦 ...........+............—............—............+........ 正切 ...........+............—............+............—........ 余切 ...........+............—............+............—........同角三角函数基本关系 同角三角函数的基本关系式 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)同角三角函数关系六角形记忆法 六角形记忆法:(参看图片或参考资料链接) 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

(1)倒数关系:对角线上两个函数互为倒数;

(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式 两角和与差的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ)/(1-tanαtanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2α=2sinαcosα cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/[1-tan^2(α)]半角公式 半角的正弦、余弦和正切公式(降幂扩角公式) sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) 另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式 万能公式 sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]万能公式推导 附推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。

同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。三倍角公式 三倍角的正弦、余弦和正切公式 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]三倍角公式推导 附推导: tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^3(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =...

求文档:高中文科数学必背公式

乘法与因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2)  a^3-b^3=(a-b(a^2+ab+b^2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b^2-4ac=0 注:方程有两个相等的实根 b^2-4ac>0 注:方程有两个不等的实根  b^2-4ac0 抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h  斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 定理: 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 作者:尘世的Angel 2008-11-22 22:48 回复此发言 -------------------------------------------------------------------------------- 2 高中数学公式 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等  40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看...

高考必考数学公式

两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cos2a=cos2a-sin2a=2cos2a-1=1-2sin2 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 2

6、圆的切线方程

(1)已知圆 . ①若已知切点 在圆上,则切线只有一条,利用垂直关系求斜率 ②过圆外一点的切线方程可设为 ,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线. ③斜率为k的切线方程可设为 ,再利用相切条件求b,必有两条切线.

(2)已知圆 .过圆上的 点的切线方程为2

7、线线平行常用方法总结:

(1)定义:在同一平面内没有公共点的两条直线是平行直线。

(2)公理:在空间中平行于同一条直线的两只直线互相平行。

(3)初中所学平面几何中判断直线平行的方法

(4)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。

(5)线面垂直的性质:如果两直线同时垂直于同一平面,那么两直线平行。

(6)面面平行的性质:若两个平行平面同时与第三个平面相交,则它们的交线平行。2

8、线面平行的判定方法: ⑴定义:直线和平面没有公共点.( 2)判定定理:若不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行

(3)面面平行的性质:两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面

(4)线面垂直的性质:平面外与已知平面的垂线垂直的直线平行于已知平面2

9、判定两平面平行的方法:

(1)依定义采用反证法

(2)利用判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。

(3)利用判定定理的推论:如果一个平面内有两条相交直线平行于另一个平面内的两条直线,则这两平面平行。

(4)垂直于同一条直线的两个平面平行。

(5)平行于同一个平面的两个平面平行。30、证明线与线垂直的方法:

(1)利用定义

(2)线面垂直的性质:如果一条直线垂直于这个平面,那么这条直线垂直于这个平面的任何一条直线。3

1、证明线面垂直的方法:

(1)线面垂直的定义

(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。

(3)线面垂直的判定定理2:如果在两条平行直线中有一条垂直于平面,那么另一条也垂直于这个平面。

(4)面面垂直的性质:如果两个平面互相垂直那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

(5)若一条直线垂直于两平行平面中的一个平面,则这条直线必垂直于另一个平面3

2、判定两个平面垂直的方法:

(1)利用定义

(2)判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。3

3、夹在两个平行平面之间的平行线段相等。经过平面外一点有且仅有一个平面与已知平面平行 两条直线被三个平行平面所截,截得的对应线段成比例。3

4、空间几何体的面积、体积 正棱锥的侧面积为S= 圆锥侧面积S= 锥体的体积V= 台体侧面积S= 台体的体积V= 柱体侧面积S= 体积V=sh 球的半径是R,则其体积是 ,其表面积是 .40两直线的.夹角公式 .( , , )( , , ).直线 时,直线l1与l2的夹角是 .41.椭圆 的参数方程是 .42.椭圆 焦半径公式 , .43.双曲线 的焦半径公式 , .1)椭圆 ①定义:若F1,F2是两定点,P为动点,且 ( 为常数)则P点的轨迹是椭圆。②标准方程:焦点在X轴: ; 焦点在Y轴: ;长轴长= ,短轴长=2b 焦距:2c [a2-b2=c2] 离心率:

(2)双曲线 ①定义:若F1,F2是两定点, ( 为常数),则动点P的轨迹是双曲线。44.抛物线 上的动点可设为P 或 P ,其中 .45.二次函数 的图象是抛物线:

(1)顶点坐标为 ;

(2)焦点的坐标为 ;

(3)准线方程是 .46.直线与圆锥曲线相交的弦长公式 或 (弦端点A ,由方程 消去y得到 , , 为直线 的倾斜角, 为直线的斜率1)向量的模长公式:a=(x,y),|a|= (2)a与b的数量积(或内积) a•b=|a||b|cosθ. 设a= ,b= ,则a•b= .(3)a•b的几何意义:数量积a•b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积

延伸阅读:

初中数学公式数学公式有很多,我就写几个常用的好了。 1、乘法与因式分 ;a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 2、三角不等式; |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|...

初中数学常用公式常见的初中数学公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点...

高中数学文科如何才能学好解析几何要学好高中数学的解析几何,就要会用好的学习方法.. 以下是我COPY的一些方法... 希望对你有用... 数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学...

高中物理公式大全请贴上来高中物理公式大全高中物理公式大全之功和能(功是能量转化的量度) 1.功:W=Fscosα(定义式){W:功(J),F:恒力(N),s:位移(m),α:F、s间的夹角} 2.重力做功:Wab=mghab{m:物体的质量,g=9.8m/s2≈10m/s2,hab:a与b高度差...

小学数学公式奥数小学奥数公式 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题的公式 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题的公式 差÷(倍数-1)=小数 小数*倍数...

高中数学不等式常用的公式高中数学不等式常用的公式,关于高中数学不等式的几个重要公式:a,b,c,a1,a2,...,an>0 (a+b)/2≥√ab a^2+b^2≥2ab (a+b+c)/3≥(abc)^(1/3) a^3+b^3+c^3≥3abc (a1+a2+…+an)/n≥...

文科高考数学必背公式文科高考数学必背公式,高中数学会考必背公式:一、高中数学诱导公式全集: 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sin...

关于高中数学数列的所有有关公式关于高中数学数列的所有有关公式,数列的公式:等比数列: 若q=1 则S=n*a1 若q≠1 推倒过程: S=a1+a1*q+a1*q^2+……+a1*q^(n-1) 等式两边同时乘q S*q=a1*q+a1*q^2+a1*q^3+……+a1*...

小学全部数学公式小学全部数学公式,小学基本数学公式有哪些:1 正方形 C周长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2 正方体 V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱...

推荐阅读
图文推荐
栏目列表