[8年级数学一次函数要点]一、知识要点: 1、一次函数:若两个变量x,y存在关系为y=kx+b (k≠0, k,b为常数)的形式,则称y是x的函数。 注意:(1)k≠0,否则自变量x的最高次项的系数不为1; (2)当b=0时,y=kx,y叫x的正...+阅读
数学一次函数的例题解析
形如y=kx+b(k≠0)的直线叫做一次函数 一.一次函数的图像及性质1.作法与图形:通过如下3个步骤
(1)列表[一般取两个点,根据两点确定一条直线];
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:
(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.函数不是数,它是指某一变量过程中两个变量之间的关系。 4.k,b与函数图像所在象限: y=kx时(即b等于0,y与x成正比) 当k>0时,直线必通过
一、三象限,y随x的增大而增大; 当k y=kx+b时: 当 k>0,b>0, 这时此函数的图象经过一,二,三象限。 当 k>0,b0时,y随x的增大而增大;
(2)当ky2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。
三、判断函数图象的位置 例3. 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 解:由kb>0,知k、b同号。因为y随x的增大而减小,所以kY2 当X
高中数学函数典型例题加分析!
进入高一不久,许多同学在新知识的学习过程中感到困难重重,不如初中那样得心应手。时间一长,有些同学对数学学习产生反感情绪甚至有恐惧心理。面对这个问题,我们应如何进行自我调节来适应高中的数学学习呢?
(一)、了解高中数学知识的特点 经过初中三年的学习,特别是中考前的复习、巩固,同学们已经熟练地掌握初中知识,并对其中一些数学思想、方法有所体会。而高中的知识无论从深度还是广度上都比初中有所加强,因此在学习中感到有一定的困难也是正常的。解决的方法之一是我们首先要对高中知识的特点有所了解,做到心中有“数”。高中知识及其学习方法具有以下的特点: 1.概念的抽象性 进入高中后,同学们觉得数学的概念不易理解。的确,初中阶段我们所学的概念很多都是从直观例子或实际事物的关系中获得感性认识后才给出定义,而高中的概念的获得则需要更多的理性思考。 以函数概念为例,初中阶段我们是考虑变量x,y之间的对应关系,即对x每个值都有唯一的y对应;而高中再次接触函数时,是从两个非空数集A,B中的元素之间的对应关系来考虑的。通过对比,我们还可以看到两个阶段中对函数的学习是有区别的。首先在符号表示上,初中只要求我们以具体的函数解析式如:等来表示函数,而高中阶段我们用更抽象的形式这个形式便于对函数的一般性质进行研究;其次,在初中阶段,学习过函数概念后,通过对具体函数的应用来实现对函数概念的巩固。而在高中阶段则是通过对函数一般性质的讨论、应用来实现对函数概念的深入理解和巩固。 上述分析告诉我们,若能将初、高中的同一概念加以对比、我们就能够对高中的抽象概念理解得更为透彻。 2.语言的精炼性 从集合与函数这章开始,一些数学符号,如 ∩,∪,∈.Φ等等已初广泛地运用,将繁冗的语言表示得即简单又精确。 例如,空集Φ可以表示方程无解;再如,设方程组的解集是F,方程的解集分别是与 。若我们要表示出F、、 之间的关系,用集合语言很容易,即。 3.知识的综合性 高中数学每一章,每一节的知识都不是孤立的,章与章之间,节与节之间有密切的联系,需要我们综合运用。 例如在我们学习了有关解不等式的内容后,我们来看下列问题: 已知三个不等式: 要使满足不等式
(3)的x值至少满足不等式
(1)和
(2)中的一个,求a的取值范围。 这个问题的分析,不仅涉及到不等式解的问题,还涉及到方程根的分布,函数在某一点的取值,几个不等式解集之间取交还是取并等等,需要我们综合利用学过的知识。
(二)、自觉架起数学知识的过渡桥梁 1.把握好集合的概念、性质 集合知识是由初中向高中知识过渡的第一座桥梁。 首先,集合的表法使初中所学的自然数集、有理数集、实数集等有关的知识的表示更为简炼,从而简化了后面复杂问题的表述;其次,集合间的关系运算可以更好地帮助我们理解新学的知识,例如对不等式的解或方程组的解的理解;第三,集合作为一种数学思想渗透于今后所要学习的许多知识中。因此在高中伊始学好有关集合的知识是十分重要的。 2.加强联想与类比 高中知识与初中知识之间的联系是十分密切的。高中的很多知识可以通过降维、降幂等形式转化为初中的有关知识,但这需要我们能将它们加以类比、联想。 以几何为例,初中平面几何中我们有过证明正三角形内任意一点到三边的距离和等于三角形的高,通过面积和相等很容易证明。 类比高中立体几何,我们能否证明一个正面体内任意一点到四个面的距离和等于该四面体的高呢? 其实同学们能够看出这个问题与上面平面几何的问题是十分类似的。这里是将二维的问题推广到三维。二维的问题可以用面积解决,三维的问题我们能用什么办法呢?也许用求体积的方法?有兴趣的同学可以试一试。 当然,联想、类比是以对知识的理解与掌握为前提的。 3.深化对数学计算的认识 数学计算在中学各个阶段的学习要求有所不同。高中阶段要求的不再是简单的应用运算法则进行运算,而是要求在计算中掌握计算的方法,理解算理,如构造法、拆项法、变量替换法、数学归纳法等的选择与运用。 例如当我们学习数列求和时遇到这样的问题:“求1!+2! 2+3! 3+··· · · ·+n! n的和”。显然利用公式是无能为力的。这就需要我们构造算法,不妨从
延伸阅读:
初二上数学有关一次函数的讲解一次函数包括正比例函数和一次函数。 正比例函数要运用的公式Y=KX,然后把已知的数值带入求出K的数值是多少。如;X=2,Y=4。则函数的解析式是:Y=2X。解析:如同我所说的把已知X、Y...
高三数学题目解析几何解:设直线AB:y=kx+b,而k=tan45°=1,即直线AB:y=x+b. 联立直线方程和抛物线方程解方程组得点A,B的坐标,设A(x1,y1),B(x2,y2). 由抛物线:Y^2=4x,得:x=y^2/4.......(1) 将(1)代入直线方...
高三数学解析几何设M(x1,y1),N(x2,y2),Q(1,0),依题意,直线PA经过点A(-2,0),P(4,t),可以设AP:y=t6(x+2),(6分) 和圆x2+y2=4联立,得到y=t6(x+2)x2+y2=4,代入消元得到,(t2+36)x2+4t2x+4t2-144=0,(7分)...
2018年国考申论词句分析题有没有例题解析卫星华图: 二、句的分析 (一)真题回顾1.根据“给定资料4”中的有关内容,谈谈对文中“困境中的不绝希望”这一表述的理解。(10分)要求:准确、简明。不超过150字。2.阅读“给定资料7...
求高一数学经典例题!谢谢大家例:设f(x)是定义在[-1,1]上的的偶函数,f(x)与g(x)图像关于x=1对称,且当x [2,3]时g(x)=a(x-2)-2(x-2)3(a为常数) (1)求f(x)的解析式分析:条件中有 (1)偶函数 (2)对称轴为x=1(3)含...
初二数学一次函数的运用应用题解:(1)W=4000x+8000(12-x)+3000(10-x)+5000(x-4) W=106000-2000x (4≤x≤10) (2)由(1)知 x最大时 W最小 x=10时 W=10600-2000*10=86000(元) 12-10=2(台) 10-10=0(台) 10-4=6(台) 答:最佳方...
怎样绘制八下数学一次函数知识树1.使学生会计算100以内的两位数加。 4.结合教学使学生受到爱学习: 1.使学生能辨认从不同位置观察到的简单物体的形状、操作: 第五单元观察物体 教学目标第一单元长度单位。 2....
小学数学长方体易错题解析要有解析要两道(1)用三个长3厘米、宽 2厘米、高 1厘米的长方体拼成一个表面积最 小的大长方体。这个长方体的表面积是((2)把两个校长都是1厘米的正方体,合拼成一个长方体,这个长方体的表面积是(...
高中数学解析几何高中数学解析几何,高中数学立体几何:72条 ∵在圆x2+y2=50上横坐标,纵坐标都是整数上的共有12个点:(1,7),(1,-7),(-1,7),(-1,-7),(7,1),(7,-1),(-7,1),-(-7,-1),(5,5),(5,-5),(-5,5...